1
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Abhijeet Puri
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India.
| | - Swastika Maitra
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, India; Department of Science and Engineering, Novel Global Community and Educational Foundation, Hebasham, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India..
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Daniel E Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damounhour University, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mai Albaik
- Chemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Item J Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
2
|
Leong CY, Wahab RA, Lee SL, Ponnusamy VK, Chen YH. Current perspectives of metal-based nanomaterials as photocatalytic antimicrobial agents and their therapeutic modes of action: A review. ENVIRONMENTAL RESEARCH 2023; 227:115578. [PMID: 36848977 DOI: 10.1016/j.envres.2023.115578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/04/2023] [Accepted: 02/24/2023] [Indexed: 05/08/2023]
Abstract
Efforts to restrict the emergence and progression of multidrug-resistant bacterial strains should heavily involve the scientific community, including government bodies, researchers, and industries, in developing new and effective photocatalytic antimicrobial agents. Such changes warrant the modernization and upscaling of materials synthesis laboratories to support and expedite the mass production of materials at the industrial scale for the benefit of humankind and the environment. Despite the massive volume of publications reporting the potential usage of different types of metal-based nanomaterials as antimicrobial agents, reviews uncovering the similarities and differences among the various products remain lacking. This review details the basic and unique properties of metal-based nanoparticles, their use as photocatalytic antimicrobial agents, and their therapeutic modes of action. It shall be noted that compared to traditional antibiotics, the mode of action of photocatalytic metal-based nanomaterials for killing microorganisms are completely different, despite displaying promising performance against antibiotic-resistant bacteria. Besides, this review uncovers the differences in the mode of actions of metal oxide nanoparticles against different types of bacteria, as well as towards viruses. Last but not least, this review comprehensively describes previous published clinical trials and medical usages involving contemporary photocatalytic antimicrobial agents.
Collapse
Affiliation(s)
- Cheng Yee Leong
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Siew Ling Lee
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Chemistry, College of Science, National Sun Yat-Sen University (NSYSU), Kaohsiung, 80424, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan; Ph.D. Program of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
3
|
Younas W, Khan FU, Zaman M, Lin D, Zuberi A, Wang Y. Toxicity of synthesized silver nanoparticles in a widespread fish: A comparison between green and chemical. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157366. [PMID: 35843321 DOI: 10.1016/j.scitotenv.2022.157366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/25/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Metallic nanoparticles are gaining importance in various fields of life due to their large surface area to volume ratio. However, metallic nanoparticles pose different toxic effects on fish when they appear with different shapes and compositions in water. Herein the present study was designed to evaluate the median (LC50) and sub-lethal (1/10th of LC50) concentrations of Ag-Green NPs, 700 μg/L for Ag-Chem NPs, and 50 μg/L for Ag2O-Chem NPs were confirmed in Hypophthalmichthys molitrix. Furthermore, exposure of H. molitrix fingerlings to 10 % of LC50 concentration of these particles induced significantly higher (p < 0.05) activities of serum alanine transaminase, aspartate aminotransferase, lactate dehydrogenase, white blood cells, acetylcholinesterase and catalase, superoxide dismutase, peroxidase, relative gene expressions of antioxidant enzymes, heat shock protein (Hsp70), hypoxia- inducible factor 1-alpha (HIF-1α) and lipid peroxidase level than the control, but decreased hematological parameters with less effects of Ag-Green NPs than chemically synthesized AgNPs. Moreover, the histopathological study also indicated morphological changes in the liver and gills of treated fish groups. The comparative toxicity evaluation revealed the maximum negative effect of Ag2O-Chem NPs followed by Ag-Chem NPs while Ag-Green NPs showed the least toxic effects. Based on our results, replacement of chemically synthesized NPs to green synthesized AgNPs can be recommended in large scale application to reduce the noxious effects to aquatic environment.
Collapse
Affiliation(s)
- Waqar Younas
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fahim Ullah Khan
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Muhib Zaman
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Amina Zuberi
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
4
|
Al Zarzour RH, Kamarulzaman EE, Saqallah FG, Zakaria F, Asif M, Abdul Razak KN. Medicinal plants' proposed nanocomposites for the management of endocrine disorders. Heliyon 2022; 8:e10665. [PMID: 36185142 PMCID: PMC9520215 DOI: 10.1016/j.heliyon.2022.e10665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/07/2022] [Accepted: 09/09/2022] [Indexed: 01/14/2023] Open
Abstract
Extensive attention has been focused on herbal medicine for the treatment of different endocrine disorders. In fact, compelling scientific evidence indicates that natural compounds might act as endocrine modulators by mimicking, stimulating, or inhibiting the actions of different hormones, such as thyroid, sex, steroidal, and glucose regulating hormones. These potentials might be effectively employed for therapeutic purposes related to the endocrine system as novel complementary choices. Nevertheless, despite the remarkable therapeutic effects, inadequate targeting efficiency and low aqueous solubility of the bioactive components are still essential challenges in their clinical accreditation. On the other hand, nanotechnology has pushed the wheels of combining inorganic nanoparticles with biological structures of medicinal bioactive compounds as one of the utmost exciting fields of research. Nanoparticle conjugations create an inclusive array of applications that provide greater compliance, higher bioavailability, and lower dosage. This can safeguard the global availability of these wealthy natural sources, regardless of their biological occurrence. This review inspects future challenges of medicinal plants in various endocrine disorders for safe and alternative treatments with examples of their nanoparticle formulations.
Collapse
Affiliation(s)
- Raghdaa Hamdan Al Zarzour
- Discipline of Physiology & Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Department of Pharmacology, Faculty of Pharmacy, Arab International University, Daraa Highway, Ghabagheb Syria
| | - Ezatul Ezleen Kamarulzaman
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Fadi G. Saqallah
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Fauziahanim Zakaria
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Khairul Niza Abdul Razak
- Discipline of Physiology & Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
5
|
Parmar S, Kaur H, Singh J, Matharu AS, Ramakrishna S, Bechelany M. Recent Advances in Green Synthesis of Ag NPs for Extenuating Antimicrobial Resistance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1115. [PMID: 35407234 PMCID: PMC9000675 DOI: 10.3390/nano12071115] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Combating antimicrobial resistance (AMR) is an on-going global grand challenge, as recognized by several UN Sustainable Development Goals. Silver nanoparticles (Ag NPs) are well-known for their efficacy against antimicrobial resistance, and a plethora of green synthesis methodologies now exist in the literature. Herein, this review evaluates recent advances in biological approaches for Ag NPs, and their antimicrobial potential of Ag NPs with mechanisms of action are explored deeply. Moreover, short and long-term potential toxic effects of Ag NPs on animals, the environment, and human health are briefly discussed. Finally, we also provide a summary of the current state of the research and future challenges on a biologically mediated Ag-nanostructures-based effective platform for alleviating AMR.
Collapse
Affiliation(s)
- Simerjeet Parmar
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (S.P.); (H.K.)
| | - Harwinder Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (S.P.); (H.K.)
| | - Jagpreet Singh
- Department of Chemical Engineering, Chandigarh University, Gharuan, Mohali 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Avtar Singh Matharu
- Department of Chemistry, Green Chemistry Centre of Excellence, University of York, York YO10 5DD, UK;
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Centre for Nanotechnology & Sustainability, National University of Singapore, Singapore 117575, Singapore;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, 34000 Montpellier, France
| |
Collapse
|
6
|
Lignin-Mediated Silver Nanoparticle Synthesis for Photocatalytic Degradation of Reactive Yellow 4G and In Vitro Assessment of Antioxidant, Antidiabetic, and Antibacterial Activities. Polymers (Basel) 2022; 14:polym14030648. [PMID: 35160637 PMCID: PMC8838823 DOI: 10.3390/polym14030648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
This study explored the potential of abundantly available sodium lignosulfonate (LS) as a reducer and fabricating agent in preparing silver nanoparticles (LS–Ag NPs). The operational conditions were optimized to make the synthesis process simpler, rapid, and eco-friendly. The prepared LS–Ag NPs were analyzed via UV–Vis spectroscopy, X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and high-resolution transmission electron microscopy. Results demonstrated that LS–Ag NPs were of crystalline structure, capped with LS constituents, and spherical in shape with a size of approximately 20 nm. Under optimized conditions, LS–Ag NPs exhibited significant photocatalytic activity in Reactive Yellow 4G degradation. The effects of photocatalyst (LS–Ag NPs) dosage, dye concentration, and its reusability for dye degradation were studied to make the process practically applicable in textile wastewater treatment. Additionally, the synthesized LS–Ag NPs displayed significant free radical scavenging against 2-diphenyl-1-picrylhydrazyl (DPPH) with an IC50 value of (50.2 ± 0.70 µg/mL) and also exhibited antidiabetic activity in terms of inhibition in the activity of carbohydrate-degrading marker enzyme α-glucosidase with an IC50 value of (58.1 ± 0.65 µg/mL). LS–Ag NPs showed substantial antibacterial potential against pathogenic strains, namely E. coli and S. aureus. In conclusion, LS–Ag NPs can be a reliable and eco-friendly material for their possible application in the treatment of dye-containing wastewater and have a great perspective in the biomedical and pharmaceutical sectors.
Collapse
|
7
|
Mobaraki F, Momeni M, Taghavizadeh Yazdi ME, Meshkat Z, Silanian Toosi M, Hosseini SM. Plant-derived synthesis and characterization of gold nanoparticles: Investigation of its antioxidant and anticancer activity against human testicular embryonic carcinoma stem cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Antimycobacterial, Anticancer, Antioxidant and Photocatalytic Activity of Biosynthesized Silver Nanoparticles Using Berberis Integerrima. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-021-01226-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat AR. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. NANOMATERIALS 2021; 11:nano11082086. [PMID: 34443916 PMCID: PMC8402060 DOI: 10.3390/nano11082086] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/06/2023]
Abstract
Rapid advances in nanotechnology have led to its emergence as a tool for the development of green synthesized noble metal nanoparticles, especially silver nanoparticles (AgNPs), for applications in diverse fields such as human health, the environment and industry. The importance of AgNPs is because of their unique physicochemical and antimicrobial properties, with a myriad of activities that are applicable in various fields, including the pharmaceutical industry. Countries with high biodiversity require the collection and transformation of information about biological assets into processes, associations, methods and tools that must be combined with the sustainable utilization of biological diversity. Therefore, this review paper discusses the applicable studies of the biosynthesis of AgNPs and their antimicrobial activities towards microorganisms in different areas viz. medicine and agriculture. The confirmed antiviral properties of AgNPs promote their applicability for SARS-CoV-2 treatment, based on assimilating the virus’ activities with those of similar viruses via in vivo studies. In this review, an insight into the cytotoxicity and safety issues of AgNPs, along with their future prospects, is also provided.
Collapse
Affiliation(s)
- Deepak Bamal
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Anoop Singh
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Gaurav Chaudhary
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Monu Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Manjeet Singh
- Department of Genetics and Plant Breeding, Oilseeds Section, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Neelam Rani
- Department of Botany and Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Poonam Mundlia
- Department of Biochemistry, Punjab University, Chandigarh 160014, India;
| | - Anita R. Sehrawat
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
- Correspondence:
| |
Collapse
|
10
|
Es-haghi A, Taghavizadeh Yazdi ME, Sharifalhoseini M, Baghani M, Yousefi E, Rahdar A, Baino F. Application of Response Surface Methodology for Optimizing the Therapeutic Activity of ZnO Nanoparticles Biosynthesized from Aspergillus niger. Biomimetics (Basel) 2021; 6:biomimetics6020034. [PMID: 34072135 PMCID: PMC8167739 DOI: 10.3390/biomimetics6020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, the biosynthesis of zinc oxide nanoparticles using Aspergillus niger (A/ZnO-NPs) is described. These particles have been characterized by UV-Vis spectrum analysis, X-ray powder diffraction, field emission scanning electron microscopy, and transmission electron microscopy. To use this biosynthesized nanoparticle as an antiproliferative and antimicrobial agent, the IC50 value against the breast cancer cell line and inhibition zone against Escherichia coli were used to optimize the effect of two processing factors including dose of filtrate fungi cell and temperature. The biosynthesized A/ZnO-NPs had an absorbance band at 320 nm and spherical shapes. The mean particles size was 35 nm. RSM (response surface methodology) was utilized to investigate the outcome responses. The Model F-value of 12.21 and 7.29 implies that the model was significant for both responses. The contour plot against inhibition zone for temperature and dose showed that if the dose increases from 3.8 to 17.2 µg/mL, the inhibition zone increases up to 35 mm. As an alternative to chemical and/or physical methods, biosynthesizing zinc oxide NPs through fungi extracts can serve as a more facile and eco-friendly strategy. Additionally, for optimization of the processes, the outcome responses in the biomedical available test can be used in the synthesis of ZnO-NPs that are utilized for large-scale production in various medical applications.
Collapse
Affiliation(s)
- Ali Es-haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran; (M.B.); (E.Y.)
- Correspondence: (A.E.-h.); (A.R.); (F.B.)
| | | | | | - Mohsen Baghani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran; (M.B.); (E.Y.)
| | - Ehsan Yousefi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran; (M.B.); (E.Y.)
| | - Abbas Rahdar
- Department of Physics, School of Basic Sciences, University of Zabol, Zabol 9861335856, Iran
- Correspondence: (A.E.-h.); (A.R.); (F.B.)
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Torino, Italy
- Correspondence: (A.E.-h.); (A.R.); (F.B.)
| |
Collapse
|
11
|
Anti-angiogenic, antibacterial, and antioxidant activities of nanoemulsions synthesized by Cuminum cyminum L. tinctures. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00947-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Amiri MS, Mohammadzadeh V, Yazdi MET, Barani M, Rahdar A, Kyzas GZ. Plant-Based Gums and Mucilages Applications in Pharmacology and Nanomedicine: A Review. Molecules 2021; 26:1770. [PMID: 33809917 PMCID: PMC8004199 DOI: 10.3390/molecules26061770] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Gums are carbohydrate biomolecules that have the potential to bind water and form gels. Gums are regularly linked with proteins and minerals in their construction. Gums have several forms, such as mucilage gums, seed gums, exudate gums, etc. Plant gums are one of the most important gums because of their bioavailability. Plant-derived gums have been used by humans since ancient times for numerous applications. The main features that make them appropriate for use in different applications are high stabilization, viscosity, adhesive property, emulsification action, and surface-active activity. In many pharmaceutical formulations, plant-based gums and mucilages are the key ingredients due to their bioavailability, widespread accessibility, non-toxicity, and reasonable prices. These compete with many polymeric materials for use as different pharmaceuticals in today's time and have created a significant achievement from being an excipient to innovative drug carriers. In particular, scientists and pharmacy industries around the world have been drawn to uncover the secret potential of plant-based gums and mucilages through a deeper understanding of their physicochemical characteristics and the development of safety profile information. This innovative unique class of drug products, useful in advanced drug delivery applications, gene therapy, and biosynthesis, has been developed by modification of plant-based gums and mucilages. In this review, both fundamental and novel medicinal aspects of plant-based gums and mucilages, along with their capacity for pharmacology and nanomedicine, were demonstrated.
Collapse
Affiliation(s)
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 917794-8954, Iran;
| | | | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
13
|
Hashemzadeh MR, Taghavizadeh Yazdi ME, Amiri MS, Mousavi SH. Stem cell therapy in the heart: Biomaterials as a key route. Tissue Cell 2021; 71:101504. [PMID: 33607524 DOI: 10.1016/j.tice.2021.101504] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases are one of the main concerns, nowadays causing a high rate of mortality in the world. The majority of conventional treatment protects the heart from failure progression. As a novel therapeutic way, Regenerative medicine in the heart includes cellular and noncellular approaches. Despite the irrefutable privileges of noncellular aspects such as administration of exosomes, utilizing of miRNAs, and growth factors, they cannot reverse necrotic or ischemic myocardium, hence recruiting of stem cells to help regenerative therapy in the heart seems indispensable. Stem cell lineages are varied and divided into two main groups namely pluripotent and adult stem cells. Not only has each of which own regenerative capacity, benefits, and drawbacks, but their turnover also close correlates with the target organ and/or tissue as well as the stage and level of failure. In addition to inefficient tissue integration due to the defects in delivering methods and poor retention of transplanted cells, the complexity of the heart and its movement also make more rigorous the repair process. Hence, utilizing biomaterials can make a key route to tackle such obstacles. In this review, we evaluate some natural products which can help stem cells in regenerative medicine of the cardiovascular system.
Collapse
Affiliation(s)
- Mohammad Reza Hashemzadeh
- Department of Stem Cells and Regenerative Medicine, Royesh Stem Cell Biotechnology Institute, Mashhad, Iran; Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Rezaei MR, Es-haghi A, Yaghmaei P, Ghobeh M. Assessment of Antioxidant and Antimicrobial Activities of Silver Nanoparticles Biosynthesized by Haplophyllum Obtusifolium. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2020. [DOI: 10.34172/ajmb.2020.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Plants comprise great antioxidant sources as a result of their redox and biochemical components, which are rich in secondary metabolites such as phenolic acids, flavonoids, and other constituents. Haplophyllum obtusifolium from polygonaceae is widely used for preventing and managing diabetes. This study investigated the antibacterial and antioxidant activities of silver nanoparticles (AgNPs) biosynthesized by H. obtusifolium. Methods: The aerial parts of H. obtusifolium were gathered from the north of Khorasan Razavi province, Iran and desiccated at the chamber temperature. The shoots were powdered by grinding, 5 g of the powder was mixed with 250 mL of deionized water, and the resultant blend was then filtered. Bactericidal properties and antioxidant activity of the nanoparticles were assessed using disk diffusion and DPPH (2, 2-diphenyl-1-picrylhydrazyl) tests, respectively. Results: The results of this study showed that the biosynthesized nanoparticles exhibited antibacterial activity against a gram-negative (Klebsiella pneumoniae) bacterium, but they had no effects on gram-positive Staphylococcus epidermidis. Antioxidant test results showed that these nanoparticles were capable of eliminating DPPH radicals in a concentration-dependent manner so that a more potent antioxidant activity was seen in higher concentrations of the nanoparticles. Conclusion: Our results suggested that H. obtusifolium can be used as a key source of antioxidants/ antimicrobial agents in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Mohammad Reza Rezaei
- Department of Biology, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Ali Es-haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
| |
Collapse
|
15
|
Taghavizadeh Yazdi ME, Amiri MS, Akbari S, Sharifalhoseini M, Nourbakhsh F, Mashreghi M, EhsanYousefi, Abbasi MR, Modarres M, Es-haghi A. Green Synthesis of Silver Nanoparticles Using Helichrysum graveolens for Biomedical Applications and Wastewater Treatment. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00794-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Baghani M, Es-haghi A. Characterization of silver nanoparticles biosynthesized using Amaranthus cruentus. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2020. [DOI: 10.1680/jbibn.18.00051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The use of plant extracts is a low-cost and green way to synthesize nanoparticles. In this research, the authors investigated the antibacterial, cytotoxic and antiangiogenic properties of silver nanoparticles (AgNPs) synthesized using Amaranthus cruentus extract. The fabricated nanoparticles were characterized by transmission electron microscopy (TEM), field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering and X-ray diffraction. The TEM results showed that the typical size of the AgNPs recorded was 15 nm. Biological tests indicated that the biosynthesized AgNPs had caused a decrease in cancerous cells (MCF-7) and had a high antibacterial activity against Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus. According to data analysis, the number and length of the blood vessels in different concentrations of AgNPs reduced significantly (depending on the dose). The chorioallantoic membrane assay revealed a large decrease in the number and length of angiogenic blood vessels in the presence of AgNPs. Real-time polymerase chain reaction and flow cytometry studies showed a dramatic increase in the gene expression of caspase-3 and caspase-8.
Collapse
Affiliation(s)
- Mohsen Baghani
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Ali Es-haghi
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| |
Collapse
|
17
|
Shahabadi N, Razlansari M, Zhaleh H. In vitro cytotoxicity studies of smart pH-sensitive lamivudine-loaded CaAl-LDH magnetic nanoparticles against Mel-Rm and A-549 cancer cells. J Biomol Struct Dyn 2020; 40:213-225. [PMID: 32873158 DOI: 10.1080/07391102.2020.1812431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, an effective nano-drug delivery system was prepared by the co-precipitation method via two steps; the preparation of Fe3O4 magnetic nanoparticles and its surface modification with layered double hydroxide (LDH) and loading lamivudine on this nanocarrier (Fe3O4@CaAl-LDH@Lamivudine). The developed nanoparticles (NPs) were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray analysis, Fourier-transformed infrared spectroscopy, vibrating-sample magnetometry, thermogravimetric analysis, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller. The prepared system demonstrated an average size of 130 nm. Also, the drug entrapment efficiency was estimated at ∼70%. In vitro, drug release investigations showed a controlled and pH-dependent lamivudine release over 300 min. The in vitro cytotoxic activity of Fe3O4@CaAl-LDH@Lamivudine NPs was explored against Mel-Rm and A-549 cancer cell lines in comparison with lamivudine and nanocarrier using lactate dehydrogenase colorimetric and MTT assay. The results of the MTT assay revealed that the Fe3O4@CaAl-LDH@Lamivudine NPs significantly inhibited the proliferation of Mel-Rm and A-549 cells in a dose-dependent manner. The influences of Fe3O4@CaAl-LDH@Lamivudine on the cancer cell lines by different therapeutic investigation illustrated the remarkable effect in comparison with free drug. Finally, the achieved consequences confirm the anticancer properties of Fe3O4@CaAl-LDH@Lamivudine and indicate that they may be a cost-effective substitute in the treatment of lung and skin cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), University of Medical Sciences, Kermanshah, Iran
| | - Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Hossein Zhaleh
- Substance Abuse Prevention Research Center, University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
18
|
Aseyd Nezhad S, Es‐haghi A, Tabrizi MH. Green synthesis of cerium oxide nanoparticle using
Origanum majorana
L. leaf extract, its characterization and biological activities. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5314] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Ali Es‐haghi
- Department of Biology, Mashhad BranchIslamic Azad University Mashhad Iran
| | | |
Collapse
|
19
|
In Vitro Antioxidant, Antipathogenicity and Cytotoxicity Effect of Silver Nanoparticles Fabricated by Onion (Allium cepa L.) Peel Extract. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00691-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Satsangi N. Synthesis and Characterization of Biocompatible Silver Nanoparticles for Anticancer Application. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01372-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Es-haghi A, Aseyd Nezhad S. The Anti-oxidant and Anti-inflammatory Properties of Cerium Oxide Nanoparticles Synthesized Using Origanum majorana L. Leaf Extract. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2019. [DOI: 10.15171/ijbsm.2019.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Free radicals have singlet electron in their outer layer rendering them high reactivity against biomolecules (i.e., DNA, carbohydrates, proteins, and lipids). Oxidative stress is created when the production of free radicals exceeds their removal by antioxidant systems and is involved in the pathogenesis of several diseases such as diabetes, arthritis, inflammatory conditions, and various cancers. Regarding the therapeutic potential of nanoparticles (NPs) in human diseases, the purpose of this study was to synthesize cerium oxide NPs using Origanum majorana leaf extract. Methods: Cerium oxide nanoparticles (CeO2 -NPs) were synthesized using aqueous leaf extract of O. majorana. The sizes of NPs were characterized by a particle size analyzer. The antioxidant properties of the CeO2 -NPs were determined by Ferric-reducing antioxidant power (FRAP) assay. The anti-inflammatory effects of the NPs were also determined by measuring gene expressions of IL-1β and IL-10 using real-time polymerase chain reaction (PCR). Results: The CeO2 -NPs were successfully synthesized using O. majorana leaf extract. The results of FRAP assay showed that the anti-oxidant activities of CeO2 -NPs at concentrations of 50, 100, and 400 μg/mL were 75%, 77.1%, and 94.5%, respectively. Moreover, interleukin 10 (IL-10) gene expressions increased by 4.6 folds while the expression of IL-1β gene decreased by 0.75-fold in HUVECs. Conclusion: The CeO2 -NPs synthesized using the aqueous extract of O. majorana demonstrated antioxidant and anti-inflammatory properties. Therefore, these NPs can be used as potential therapeutic agents in medicine.
Collapse
Affiliation(s)
- Ali Es-haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Saynaz Aseyd Nezhad
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
22
|
Es-haghi A, Javadi F, Taghavizadeh Yazdi ME, Amiri MS. The Expression of Antioxidant Genes and Cytotoxicity of Biosynthesized Cerium Oxide Nanoparticles Against Hepatic Carcinoma Cell Line. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2019. [DOI: 10.34172/ajmb.2019.04] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Drug resistance due to genetic variations renders many therapeutic methods such as surgery, radiotherapy, chemotherapy, and hormone therapy unsuccessful in eradicating cancerous cells. Nowadays, application of nanoparticles (NPs) has been promising in destroying cancerous cells without side effects on normal cells. Objectives: This study aimed to investigate the antioxidant and anticancer effects of biosynthesized cerium oxide nanoparticles (CeO2 -NPs) on a hepatic carcinoma cell line. Methods: MTT assay was used to determine the cytotoxicity of CeO2 -NPs in concentrations of 0, 15.6, 31.2, 62.5, 125, and 250 μg/mL after 24, 48, and 72 hours of incubation. Moreover, the expression levels of catalase (CAT) and superoxide dismutase (SOD) (the antioxidant genes) were investigated at different concentrations of CeO2 -NPs using real-time polymerase chain reaction (PCR). Results: Our results showed a significant toxicity of the synthesized NPs against the cancerous liver cells. The IC50 calculated for CeO2 -NPs was 500 μg/mL at 24 hours of incubation. In addition, the expression levels of CAT and SOD significantly (P<0.05) increased upon the treatment of cells with CeO2 -NPs (500 µg /mL) compared to the untreated cells. Conclusion: Considering the minimal effects of the biosynthesized CeO2 -NPs on normal cells and on the other hand their considerable toxicity against hepatic cancer cells, these NPs could be utilized in medicine and in the development of new drugs for cancer cells.
Collapse
Affiliation(s)
- Ali Es-haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Fatemeh Javadi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | |
Collapse
|
23
|
Baghani M, Es-haghi A. The Antioxidant Activity and Cytotoxic Effects of Amaranthus cruentus-Biosynthesized Silver Nanoparticles Toward MCF-7 Breast Cancer Cell Line. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2019. [DOI: 10.15171/ijbsm.2019.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Silver nanoparticles (AgNPs) have grabbed special attention owing to their exclusive structural features. Green synthesis (i.e., plant-mediated) of AgNPs is an efficient and cost-effective method with widespread clinical applications. Therefore, the present study aimed to synthesize AgNPs based on green synthesis method employing the seed extracts of Amaranthus cruentus and to investigate the antioxidant and cytotoxic activities of the biosynthesized AgNPs. Methods: The Ag-NPs were biologically synthesized using the A. cruentus extract which served as a reducing agent. Then, the synthesized Ag-NPs were visualized by transmission electron microscopy. Next, the antioxidant activity of the synthesized Ag-NPs was evaluated by DPPH and ABTS methods. Finally, the cytotoxicity of AgNPs was investigated against MCF-7 breast cancer cell line using MTT assay. Results: The mean diameter of the synthesized Ag-NPs ranged from 20 to 40 nm. In addition, the IC50 of free radical scavenging activity of the Ag-NPs were obtained as 500 µg/mL (DPPH) and 400 µg/mL (ABTS). Further, the AgNPs showed time and dose-dependent cytotoxicity against MCF-7 cells. Eventually, at the 24-hour exposition to the 80 µg/mL dose of AgNPs, the viability of cancerous cells was 19% plunging to 2.03% and 1.9% after 48 hours and 72 hours, respectively. Conclusion: In general, plant extracts can serve as facile and eco-friendly alternatives to hazardous methods for synthesizing the metal nanoparticles. Therefore, the A. cruentus biosynthesized AgNPs can be utilized in medicine for various purposes due to their low toxicity and appropriate antioxidant activity.
Collapse
Affiliation(s)
- Mohsen Baghani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Es-haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|