1
|
Yang Y, Zhang W, Zhang L, Guo M, Xiang C, Ren M, Han Y, Shi J, Li H, Xu X. The development of multifunctional materials for water pollution remediation using pollen and sporopollenin. Int J Biol Macromol 2024; 273:133051. [PMID: 38862057 DOI: 10.1016/j.ijbiomac.2024.133051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Pollen is a promising material for water treatment owing to its renewable nature, abundant sources, and vast reserves. The natural polymer sporopollenin, found within pollen exine, possesses a distinctive layered porous structure, mechanical strength, and stable chemical properties, which can be utilized to prepare sporopollenin exine capsules (SECs). Leveraging these attributes, pollen or SECs can be used to develop water pollution remediation materials. In this review, the structure of pollen is first introduced, followed by the categorization of various methods for extracting SECs. Then, the functional expansion of pollen adsorbents, with an emphasis on their recyclability, reusability, and visual sensing capabilities, as opposed to mere functional group modification, is discussed. Furthermore, the progress made in utilizing pollen as a biological template for synthesizing catalysts is summarized. Intriguingly, pollen can also be engineered into self-propelled micromotors, enhancing its potential application in adsorption and catalysis. Finally, the challenges associated with the application of pollen in water pollution treatment are discussed. These challenges include the selection of environmentally friendly, non-toxic reagents in synthesizing pollen water remediation products and the large-scale application after synthesis. Moreover, the multifunctional synthesis and application of different water remediation products are prospected.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Wenqi Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Lu Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Mengyao Guo
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Chengwen Xiang
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Mengyu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hongliang Li
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China.
| | - Xiaoguang Xu
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Liu G, Zhang X, Wang J, Li L, Cao J, Yin C, Liu Y, Chen G, Lv J, Xu X, Wang J, Huang X, Xu D. Facile preparation of biomimetic mineralized COFs based on magnetic silk fibroin and its effective extraction of sulforaphane from cruciferous vegetables. Food Chem 2024; 434:137482. [PMID: 37722339 DOI: 10.1016/j.foodchem.2023.137482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
A novel biomimetic mineralized covalent organic framework (BM-COF) was prepared based on magnetic silk fibroin and a new sulforaphane pretreatment technology was constructed. First, metal coordination was performed on the surface of silk fibroin, and nanoparticles were deposited by in-situ mineralization after co-precipitation. Then, biomineralized COFs were prepared by in-situ self-assembly of a COF layer on Fe3O4@silk fibroin surface guided by interfacial directional growth technology. The BM-COFs had a multilayer structure, large specific surface area and pore volume, and superparamagnetic properties, which make them an ideal adsorbent. The adsorption of sulforaphane by BM-COFs is mainly multi-molecular layer adsorption and chemisorption, there might be electrostatic action, π-stacking and hydrogen bonding in the adsorption process. The composite material was successfully used for the pretreatment of sulforaphane in cruciferous vegetables. An extraction time of 30 min gave extraction efficiencies as high as 92%, and the recovery could reach more than 73%.
Collapse
Affiliation(s)
- Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China.
| | - Xuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China; Southwest University, Chongqing 400715, China.
| | - Jian Wang
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China.
| | - Lingyun Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| | - Jiayong Cao
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China.
| | - Chen Yin
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China.
| | - Yuan Liu
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China.
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| | - Jun Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| | - Xiaomin Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture Beijing, 100081 Beijing, China.
| | - Xiaodong Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China; Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Sun M, Zhong Z, Wang Y, Yu B, Zhang L, Zhang W. Dual-functional lanthanide-MOF probe nanocomposite based on hydroxyapatite nanowires as fluorescent sensor for ascorbic acid. Mikrochim Acta 2023; 190:89. [PMID: 36781571 DOI: 10.1007/s00604-023-05667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
A dual-functional lanthanide-MOF nanocomposite probe was designed and constructed for the detection of ascorbic acid (AA). The magnetically functionalized hydroxyapatite nanowires are selected as the carriers and simultaneously loaded with ciprofloxacin (CIP) and terbium metal organic framework to form the internal reference fluorescence probe nanocomposite (Fe3O4-HAPNWs-Tb/MOF-CIP). This dual-functional lanthanide-MOF probe not only combines the respectively unique fluorescence properties of lanthanide MOFs and CIP, but also takes full advantage of the rapid separation properties of the magnetic component. Structural and spectroscopic characterization results have demonstrated the successful synthesis of probe material and the fluorescence mechanism. At a suitable excitation wavelength (295 nm), the probe can simultaneously emit characteristic fluorescence of CIP (445 nm) and Tb3+ (543 nm). In the presence of AA, the ratio of I543/I445 decreases rapidly with increasing of AA concentration. The linear range of determination is 0.3-40 μM with a detection limit of 20.4 nM. The contents of AA in vitamin C tablets and four fruit juice samples were detected by the composite probe. The spiked recoveries ranged from 82.6 to 104.2% with relative standard deviations (RSD) less than 2.1%, revealing the practical application value of the developed sensor in healthcare and food fields. A novel internal reference fluorescence sensor (Fe O -HAPNWs-Tb/MOF-CIP) was constructed for detecting ascorbic acid by solvothermal and self-assembly techniques, showing excellent selectivity and sensitivity based on the different responses of Tb/MOF and CIP to the target.
Collapse
Affiliation(s)
- Mengyao Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhihua Zhong
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yajie Wang
- Department of Pharmacy, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Bohao Yu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Lei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|