1
|
Feyie E, Zereffa EA, Tadesse A, Goddati M, Noh D, Oh E, Tufa LT, Lee J. An Efficient p-n Heterojunction Copper Tin Sulfide/g-C 3N 4 Nanocomposite for Methyl Orange Photodegradation. ACS OMEGA 2024; 9:28463-28475. [PMID: 38973891 PMCID: PMC11223204 DOI: 10.1021/acsomega.4c02414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024]
Abstract
The discharge of toxic dye effluents from industry is a major concern for environmental pollution and toxicity. These toxic dyes can be efficiently removed from waste streams using a photocatalysis process involving visible light. Due to its simple synthesis procedure, inexpensive precursor, and robust stability, graphitic carbon nitride (g-C3N4, or CN) has been used as a visible light responsive catalyst for the degradation of dyes with mediocre performance because it is limited by its low visible light harvesting capability due to its wide bandgap and fast carrier recombination rate. To overcome these limitations and enhance the performance of g-C3N4, it was coupled with a narrow bandgap copper tin sulfide (CTS) semiconductor to form a p-n heterojunction. CTS and g-C3N4 were selected due to their good stability, low toxicity, ease of synthesis, layered sheet/plate-like morphology, and relatively abundant precursors. Accordingly, a series of copper tin sulfide/graphitic carbon nitride nanocomposites (CTS/g-C3N4) with varying CTS contents were successfully synthesized via a simple two-step process involving thermal pyrolysis and coprecipitation for visible-light-induced photocatalytic degradation of methyl orange (MO) dye. The photocatalytic activity results showed that the 50%(wt/wt) CTS/g-C3N4 composite displayed a remarkable degradation efficiency of 95.6% for MO dye under visible light illumination for 120 min, which is higher than that of either pristine CTS or g-C3N4. The improved performance is attributed to the extended light absorption range (due to the optimized bandgap), effective suppression of photoinduced electron-hole recombination, and improved charge transfer that arose from the formation of a p-n heterojunction, as evidenced by electrochemical impedance spectroscopy (EIS), photocurrent, and photoluminescence results. Moreover, the results of the reusability study showed that the composite has excellent stability, indicating its potential for the degradation of MO and other toxic organic dyes from waste streams.
Collapse
Affiliation(s)
- Endale
Kebede Feyie
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
| | - Enyew Amare Zereffa
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
| | - Aschalew Tadesse
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
| | - Mahendra Goddati
- Department
of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Daegwon Noh
- Department
of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute
of Quantum Systems (IQS), Chungnam National
University,99 Daehak-ro Yuseong-gu, Daejeon 34134, Korea
| | - Eunsoon Oh
- Department
of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute
of Quantum Systems (IQS), Chungnam National
University,99 Daehak-ro Yuseong-gu, Daejeon 34134, Korea
| | - Lemma Teshome Tufa
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
- Research
Institute of Materials Chemistry, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Jaebeom Lee
- Department
of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
- Research
Institute of Materials Chemistry, Chungnam
National University, Daejeon 34134, Republic
of Korea
| |
Collapse
|
2
|
Yang Q, Wang X, Shi J, Wei J, He Y. Constructed a novel of Znln 2S 4/S-C 3N 4 heterogeneous catalyst for efficient photodegradation of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111152-111164. [PMID: 37804380 DOI: 10.1007/s11356-023-30052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023]
Abstract
Despite S-doped C3N4 can exhibit more efficient photo-reactivity than pure C3N4, there is still some space to further improve the detaching efficiency of electron-hole and enhance the photocatalytic efficiency of S-C3N4. The construction of heterojunction is an effective method to promote the photocatalytic efficiency. ZnIn2S4, as a novel photocatalyst, its VB (1.37 V) and CB (- 1.09 V) can match with S-C3N4. Therefore, we hope to construct the ZnIn2S4/S-C3N4 heterojunction for boosting the photocatalytic activity of S-C3N4. In this paper, ZnIn2S4/S-C3N4 heterojunction was prepared through hydrothermal method using S-C3N4, ZnCl2, InCl3·4H2O, and thioacetamide as raw materials and heated at 160 °C for 16 h. The optimum 18% ZnIn2S4/S-C3N4 nanocomposites exhibit dramatically enhanced photocatalytic performance for degradation of tetracycline with 86.3% removal rate within 120 min, higher than 50% degradation efficiency of pure S-C3N4. And in the process of photodegradation for tetracycline, the largest contribution rate is the photo-excited cavity (h+), followed by ·O2- and ·OH. Herein, we have provided a good example for removing antibiotic residues by using S-C3N4-based heterojunction towards environmental remediation.
Collapse
Affiliation(s)
- Qian Yang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China.
| | - Xueting Wang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Jing Shi
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Jiaqi Wei
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yangqing He
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
3
|
Nkwoada AU, Onyedika G, Oguzie E, Ogwuegbu M. Development of PSA@PS-TiO 2 nanocomposite photocatalyst: structure, mechanism, and application using response surface designs and molecular modeling. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2701-2726. [PMID: 37318919 PMCID: wst_2023_148 DOI: 10.2166/wst.2023.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using periwinkle shell ash (PSA) and polystyrene (PS), a new-fangled PSA@PS-TiO2 photocatalyst was fabricated. The morphological images of all the samples studied using a high-resolution transmission electron microscope (HR-TEM) showed a size distribution of 50-200 nm for all samples. The SEM-EDX showed that the membrane substrate of PS was well dispersed, confirming the presence of anatase/rutile phases of TiO2, and Ti and O2 were the major composites. Given the very rough surface morphology (atomic force microscopy (AFM)) due to PSA, the main crystal phases (XRD) of TiO2 (rutile and anatase), low bandgap (UVDRS), and beneficial functional groups (FTIR-ATR), the 2.5 wt.% of PSA@PS-TiO2 exhibited better photocatalytic efficiency for methyl orange degradation. The photocatalyst, pH, and initial concentration were investigated and the PSA@PS-TiO2 was reused for five cycles with the same efficiency. Regression modeling predicted 98% efficiency and computational modeling showed a nucleophilic initial attack initiated by a nitro group. Therefore, PSA@PS-TiO2 nanocomposite is an industrially promising photocatalyst for treating azo dyes, particularly, methyl orange from an aqueous solution.
Collapse
Affiliation(s)
- Amarachi Udoka Nkwoada
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Owerri, P.M.B. 1526 Owerri, Nigeria E-mail:
| | - Gerald Onyedika
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Owerri, P.M.B. 1526 Owerri, Nigeria E-mail:
| | - Emeka Oguzie
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Owerri, P.M.B. 1526 Owerri, Nigeria E-mail: ; Africa Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology Owerri, P.M.B. 1526 Owerri, Imo State, Nigeria
| | - Martin Ogwuegbu
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Owerri, P.M.B. 1526 Owerri, Nigeria E-mail:
| |
Collapse
|
4
|
Aljuaid A, Almehmadi M, Alsaiari AA, Allahyani M, Abdulaziz O, Alsharif A, Alsaiari JA, Saih M, Alotaibi RT, Khan I. g-C 3N 4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives. Molecules 2023; 28:molecules28073199. [PMID: 37049963 PMCID: PMC10096294 DOI: 10.3390/molecules28073199] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
Industrial effluents containing dyes are the dominant pollutants, making the drinking water unfit. Among the dyes, methylene orange (MO) dye is mutagenic, carcinogenic and toxic to aquatic organisms. Therefore, its removal from water bodies through effective and economical approach is gaining increased attention in the last decades. Photocatalytic degradation has the ability to convert economically complex dye molecules into non-toxic and smaller species via redox reactions, by using photocatalysts. g-C3N4 is a metal-free n-type semiconductor, typical nonmetallic and non-toxici polymeric photocatalyst. It widely used in photocatalytic materials, due to its easy and simple synthesis, fascinating electronic band structure, high stability and abundant availability. As a photocatalyst, its major drawbacks are its limited efficiency in separating photo-excited electron-hole pairs, high separated charge recombination, low specific surface area, and low absorption coefficient. In this review, we report the recent modification strategies adopted for g-C3N4 for the efficient photodegradation of MO dye. The different modification approaches, such as nanocomposites and heterojunctions, as well as doping and defect introductions, are briefly discussed. The mechanism of the photodegradation of MO dye by g-C3N4 and future perspectives are discussed. This review paper will predict strategies for the fabrication of an efficient g-C3N4-based photocatalyst for the photodegradation of MO dye.
Collapse
Affiliation(s)
- Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Jawaher Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Magdi Saih
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Rema Turki Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Idrees Khan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
5
|
Matias ML, Reis-Machado AS, Rodrigues J, Calmeiro T, Deuermeier J, Pimentel A, Fortunato E, Martins R, Nunes D. Microwave Synthesis of Visible-Light-Activated g-C 3N 4/TiO 2 Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1090. [PMID: 36985984 PMCID: PMC10057508 DOI: 10.3390/nano13061090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The preparation of visible-light-driven photocatalysts has become highly appealing for environmental remediation through simple, fast and green chemical methods. The current study reports the synthesis and characterization of graphitic carbon nitride/titanium dioxide (g-C3N4/TiO2) heterostructures through a fast (1 h) and simple microwave-assisted approach. Different g-C3N4 amounts mixed with TiO2 (15, 30 and 45 wt. %) were investigated for the photocatalytic degradation of a recalcitrant azo dye (methyl orange (MO)) under solar simulating light. X-ray diffraction (XRD) revealed the anatase TiO2 phase for the pure material and all heterostructures produced. Scanning electron microscopy (SEM) showed that by increasing the amount of g-C3N4 in the synthesis, large TiO2 aggregates composed of irregularly shaped particles were disintegrated and resulted in smaller ones, composing a film that covered the g-C3N4 nanosheets. Scanning transmission electron microscopy (STEM) analyses confirmed the existence of an effective interface between a g-C3N4 nanosheet and a TiO2 nanocrystal. X-ray photoelectron spectroscopy (XPS) evidenced no chemical alterations to both g-C3N4 and TiO2 at the heterostructure. The visible-light absorption shift was indicated by the red shift in the absorption onset through the ultraviolet-visible (UV-VIS) absorption spectra. The 30 wt. % of g-C3N4/TiO2 heterostructure showed the best photocatalytic performance, with a MO dye degradation of 85% in 4 h, corresponding to an enhanced efficiency of almost 2 and 10 times greater than that of pure TiO2 and g-C3N4 nanosheets, respectively. Superoxide radical species were found to be the most active radical species in the MO photodegradation process. The creation of a type-II heterostructure is highly suggested due to the negligible participation of hydroxyl radical species in the photodegradation process. The superior photocatalytic activity was attributed to the synergy of g-C3N4 and TiO2 materials.
Collapse
Affiliation(s)
- Maria Leonor Matias
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Ana S. Reis-Machado
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Joana Rodrigues
- Physics Department & I3N, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tomás Calmeiro
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Jonas Deuermeier
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Ana Pimentel
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Daniela Nunes
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Metal-free g-C3N4/melem nanorods hybrids for photocatalytic degradation of methyl orange. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Facile synthesis of ZnCd-MOF/Ag3PO4 heterojunction for highly efficient photocatalytic oxygen evolution. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04749-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Huang Y, Xing W, Zhou L, Tian B, Zhang J, Zhou Y. Molybdenum oxide nanorods decorated with molybdenum phosphide quantum dots for efficient photocatalytic degradation of rhodamine B and norfloxacin. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|