1
|
Yabbarov NG, Nikolskaya ED, Bibikov SB, Maltsev AA, Chirkina MV, Mollaeva MR, Sokol MB, Epova EY, Aliev RO, Kurochkin IN. Methods for Rapid Evaluation of Microbial Antibiotics Resistance. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S312-S341. [PMID: 40164164 DOI: 10.1134/s0006297924603678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 04/02/2025]
Abstract
Antibiotic resistance is a major challenge for public health systems worldwide. Rapid and effective identification of bacterial strains is critical for reducing the use of antibiotics and restricting the spread of antibiotic-resistant microorganisms. Various approaches have been developed in recent years for rapid bacterial identification and antibiotic susceptibility testing (AST), such as Raman spectroscopy, single cell image analysis, microfluidic techniques, mass spectrometry analysis, use of high-sensitive luminescent and fluorescent tags, impedance-based detection, and others. This review describes the methods developed for rapid bacterial identification and assessment of their antibiotic susceptibility, including general principles, specific problems, and future prospects.
Collapse
Affiliation(s)
- Nikita G Yabbarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Elena D Nikolskaya
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Sergei B Bibikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Aleksandr A Maltsev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita V Chirkina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mariia R Mollaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maria B Sokol
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Ekaterina Yu Epova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Ruslan O Aliev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Ilya N Kurochkin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
2
|
Gulyaev IA, Sokol MB, Mollaeva MR, Klimenko MA, Yabbarov NG, Chirkina MV, Nikolskaya ED. Polymeric Drug Delivery Systems in Biomedicine. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S233-S262. [PMID: 40164161 DOI: 10.1134/s0006297924603976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 04/02/2025]
Abstract
Our review examines the key aspects of using polymeric carriers in biomedicine. The section "Polymers for Biomedicine" provides an overview of different types of polymers, their structural features and properties that determine their use as drug delivery vehicles. The section "Polymeric Carriers" characterizes the role of polymeric delivery systems in modern medicine. The main forms of polymeric carriers are described, as well as their key advantages for drug delivery. The section "Preclinical and Clinical Trials of Polymeric Drug Carriers" reviews the examples of clinical and preclinical studies of polymeric forms used for antitumor therapy, therapy for bacterial and infectious diseases. The final section "Targeted Drug Delivery Systems" is devoted to the discussion of approaches, as well as ligands that provide targeted drug delivery using polymeric carriers. We have paid special attention to modern approaches for increasing the efficacy of antibacterial therapy using vector molecules.
Collapse
Affiliation(s)
- Ivan A Gulyaev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Maria B Sokol
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mariia R Mollaeva
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maksim A Klimenko
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Nikita G Yabbarov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita V Chirkina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elena D Nikolskaya
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
3
|
Sokol MB, Beganovskaya VA, Mollaeva MR, Yabbarov NG, Chirkina MV, Belykh DV, Startseva OM, Egorov AE, Kostyukov AA, Kuzmin VA, Lomakin SM, Shilkina NG, Krivandin AV, Shatalova OV, Gradova MA, Abakumov MA, Nikitin AA, Maksimova VP, Kirsanov KI, Nikolskaya ED. Pharmaceutical Approach to Develop Novel Photosensitizer Nanoformulation: An Example of Design and Characterization Rationale of Chlorophyll α Derivative. Pharmaceutics 2024; 16:126. [PMID: 38258135 PMCID: PMC10818748 DOI: 10.3390/pharmaceutics16010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, we described physico-chemical properties of novel nanoformulation of photosensitizer-pyropheophorbide α 17-diethylene glycol ester (XL) (chlorophyll α derivative), revealing insights into antitumor activity and maintaining quality, meeting the pharmaceutical approach of new nanoformulation design. Our formulation, based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles, increased XL solubility and selective tumor-targeted accumulation. In our research, we revealed, for the first time, that XL binding to polyvinyl alcohol (PVA) enhances XL photophysical activity, providing the rationale for PVA application as a stabilizer for nanoformulations. Results of FTIR, DSC, and XRD revealed the physical interactions between XL and excipients, including PVA, indicating that the encapsulation maintained XL binding to PVA. The encapsulated XL exhibited higher photophysical activity compared to non-encapsulated substance, which can be attributed to the influence of residual PVA. Gamma-irradiation led to degradation of XL; however, successful sterilization of the samples was achieved through the filtration. Importantly, the encapsulated and sterilized XL retained cytotoxicity against both 2D and 3D tumor cell models, demonstrating the potential of the formulated NP-XL for photodynamic therapy applications, but lacked the ability to reactivate epigenetically silenced genes. These findings provide valuable insights into the design and characterization of PLGA-based nanoparticles for the encapsulation of photosensitizers.
Collapse
Affiliation(s)
- Maria B. Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Veronika A. Beganovskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Mariia R. Mollaeva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Nikita G. Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Margarita V. Chirkina
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Dmitry V. Belykh
- Institute of Chemistry, Komi Scientific Center, Ural Division of the Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Olga M. Startseva
- Pitirim Sorokin Syktyvkar State University, 167001 Syktyvkar, Russia;
| | - Anton E. Egorov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Alexey A. Kostyukov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Vladimir A. Kuzmin
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
- National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Sergei M. Lomakin
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
- N. N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.S.)
| | - Natalia G. Shilkina
- N. N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.S.)
| | - Alexey V. Krivandin
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Olga V. Shatalova
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Margarita A. Gradova
- N. N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.S.)
| | - Maxim A. Abakumov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia; (M.A.A.); (A.A.N.)
| | - Aleksey A. Nikitin
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia; (M.A.A.); (A.A.N.)
| | - Varvara P. Maksimova
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (V.P.M.); (K.I.K.)
| | - Kirill I. Kirsanov
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (V.P.M.); (K.I.K.)
| | - Elena D. Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| |
Collapse
|
4
|
Mollaeva MR, Yabbarov N, Sokol M, Chirkina M, Mollaev MD, Zabolotskii A, Seregina I, Bolshov M, Kaplun A, Nikolskaya E. Optimization, Characterization and Pharmacokinetic Study of Meso-Tetraphenylporphyrin Metal Complex-Loaded PLGA Nanoparticles. Int J Mol Sci 2021; 22:12261. [PMID: 34830136 PMCID: PMC8618356 DOI: 10.3390/ijms222212261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
The selection of technological parameters for nanoparticle formulation represents a complicated development phase. Therefore, the statistical analysis based on Box-Behnken methodology is widely used to optimize technological processes, including poly(lactic-co-glycolic acid) nanoparticle formulation. In this study, we applied a two-level three-factor design to optimize the preparation of nanoparticles loaded with cobalt (CoTPP), manganese (MnClTPP), and nickel (NiTPP) metalloporphyrins (MeP). The resulting nanoparticles were examined by dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, MTT test, and hemolytic activity assay. The optimized model of nanoparticle formulation was validated, and the obtained nanoparticles possessed a spherical shape and physicochemical characteristics enabling them to deliver MeP in cancer cells. In vitro hemolysis assay revealed high safety of the formulated MeP-loaded nanoparticles. The MeP release demonstrated a biphasic profile and release mechanism via Fick diffusion, according to release exponent values. Formulated MeP-loaded nanoparticles revealed significant antitumor activity and ability to generate reactive oxygen species. MnClTPP- and CoTPP-nanoparticles specifically accumulated in tissues, preventing wide tissue distribution caused by long-term circulation of the hydrophobic drug. Our results suggest that MnClTPP- and CoTPP-nanoparticles represent the greatest potential for utilization in in anticancer therapy due to their effectiveness and safety.
Collapse
Affiliation(s)
- Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Murad D. Mollaev
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Artur Zabolotskii
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Irina Seregina
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Mikhail Bolshov
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Alexander Kaplun
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia;
| | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| |
Collapse
|
5
|
Tertyshnaya YV, Lobanov AV, Khvatov AV. Morphology and Antibacterial Properties of Composites Based on Polylactide and Manganese(III) Complex with Tetraphenylporphyrin. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s1990793120060135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
7
|
Role of hydrolytic degradation of polylactide drug carriers in developing micro- and nanoscale polylactide-based drug dosage forms. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2918-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Tertyshnaya Y, Lobanov A, Karpova S, Pantyukhov P. Composites based on polylactide and manganese (III) tetraphenylporphyrin. Influence of concentration on the structure and properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Faustova MR, Nikolskaya ED, Mollaev MD, Sokol MB, Zabolotsky AI, Zhunina OA, Fomicheva MV, Schvets VI, Lobanov AV, Yabbarov NG. Polymer particles containing Fe-based metalloporphyrin as a highly efficient stimulator of reactive oxygen species formation in vitro and in vivo. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2690-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|