1
|
Scheiner S. Transition from covalent to noncovalent bonding between tetrel atoms. Phys Chem Chem Phys 2024; 26:15978-15986. [PMID: 38775057 DOI: 10.1039/d4cp01598c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The strength and nature of the bonding between tetrel (T) atoms in R2T⋯TR2 is examined by quantum calculations. T atoms cover the range of Group 14 atoms from C to Pb, and substituents R include Cl, F, and NH2. Systems vary from electrically neutral to both positive and negative overall charged radicals. There is a steady weakening progression in T-T bond strength as the tetrel atom grows larger, transitioning smoothly from a strong covalent to a much weaker noncovalent bond for the larger T atoms. The latter have some of the characteristics of a ditetrel bond, but there are also significant deviations from a classic bond of this type. The T2Cl4- anions are more strongly bonded than the corresponding cations, which are in turn stronger than the neutrals.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, USA.
| |
Collapse
|
2
|
Niu Z, Wu Q, Li Q, Scheiner S. C∙∙∙O and Si∙∙∙O Tetrel Bonds: Substituent Effects and Transfer of the SiF 3 Group. Int J Mol Sci 2023; 24:11884. [PMID: 37569259 PMCID: PMC10418337 DOI: 10.3390/ijms241511884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The tetrel bond (TB) between 1,2-benzisothiazol-3-one-2-TF3-1,1-dioxide (T = C, Si) and the O atom of pyridine-1-oxide (PO) and its derivatives (PO-X, X = H, NO2, CN, F, CH3, OH, OCH3, NH2, and Li) is examined by quantum chemical means. The Si∙∙∙O TB is quite strong, with interaction energies approaching a maximum of nearly 70 kcal/mol, while the C∙∙∙O TB is an order of magnitude weaker, with interaction energies between 2.0 and 2.6 kcal/mol. An electron-withdrawing substituent on the Lewis base weakens this TB, while an electron-donating group has the opposite effect. The SiF3 group transfers roughly halfway between the N of the acid and the O of the base without the aid of cooperative effects from a third entity.
Collapse
Affiliation(s)
- Zhihao Niu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (Z.N.); (Q.W.)
| | - Qiaozhuo Wu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (Z.N.); (Q.W.)
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (Z.N.); (Q.W.)
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
3
|
Jabłoński M. Halogen Bond to Experimentally Significant N-Heterocyclic Carbenes (I, IMe 2, I iPr 2, I tBu 2, IPh 2, IMes 2, IDipp 2, IAd 2; I = Imidazol-2-ylidene). Int J Mol Sci 2023; 24:ijms24109057. [PMID: 37240403 DOI: 10.3390/ijms24109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The subjects of the article are halogen bonds between either XCN or XCCH (X = Cl, Br, I) and the carbene carbon atom in imidazol-2-ylidene (I) or its derivatives (IR2) with experimentally significant and systematically increased R substituents at both nitrogen atoms: methyl = Me, iso-propyl = iPr, tert-butyl = tBu, phenyl = Ph, mesityl = Mes, 2,6-diisopropylphenyl = Dipp, 1-adamantyl = Ad. It is shown that the halogen bond strength increases in the order Cl < Br < I and the XCN molecule forms stronger complexes than XCCH. Of all the carbenes considered, IMes2 forms the strongest and also the shortest halogen bonds with an apogee for complex IMes2⋯ICN for which D0 = 18.71 kcal/mol and dC⋯I = 2.541 Å. In many cases, IDipp2 forms as strong halogen bonds as IMes2. Quite the opposite, although characterized by the greatest nucleophilicity, ItBu2 forms the weakest complexes (and the longest halogen bonds) if X ≠ Cl. While this finding can easily be attributed to the steric hindrance exerted by the highly branched tert-butyl groups, it appears that the presence of the four C-H⋯X hydrogen bonds may also be of importance here. Similar situation occurs in the case of complexes with IAd2.
Collapse
Affiliation(s)
- Mirosław Jabłoński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
4
|
Chen Y, Yao L, Wang F. Intermolecular interactions between the heavy-atom analogues of acetylene T 2H 2 (T = Si, Ge, Sn, Pb) and HCN. J Mol Model 2023; 29:52. [PMID: 36689026 DOI: 10.1007/s00894-023-05459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
METHODS The intermolecular interactions between the heavy-atom analogues of acetylene T2H2 (T = Si, Ge, Sn, Pb) and HCN have been investigated by theoretical calculations at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level. RESULTS The global energy minimum of T2H2 is the butterfly structure A, and another energy minimum is the planar structure B. Both structures A and B exhibit the dual behavior when binding with HCN. The various hydrogen bond (HB), dihydrogen bond (DB) and tetrel bond (TB) complexes can be found according to the MEP maps of T2H2. One TB and three HB complexes formed between structure A and HCN can be located for Si2H2 and Ge2H2. One TB, two HB and one DB complexes formed between structure A and HCN can be located for Sn2H2 and Pb2H2. Four TB and one HB complexes formed between structure B and HCN can be located for all the T2H2. The geometries and binding strengths of the complexes are compared and analyzed. CONCLUSIONS The interactions in these complexes are generally weak, and the interaction energies of these complexes range from -0.53 to -8.23 kcal/mol. The interaction energies of the TB complexes are larger than those of the corresponding HB and DB complexes for structure A···HCN systems. The relative binding strength of the four TB complexes exhibits different order for different structure B···HCN systems, which is consistent with the MEP maps of the isolated monomers.
Collapse
Affiliation(s)
- Yishan Chen
- School of Chemistry & Environmental Science, Qujing Normal University, Qujing, 655011, Yunnan, China.
| | - Lifeng Yao
- School of Chemistry & Environmental Science, Qujing Normal University, Qujing, 655011, Yunnan, China
| | - Fan Wang
- School of Chemistry & Environmental Science, Qujing Normal University, Qujing, 655011, Yunnan, China
| |
Collapse
|
5
|
Chen Y, Yao L, Wang F. Hydrogen-bonding Interactions involving the Imidazol-2-ylidene and Its Heavy-atom Analogues. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Nature of Beryllium, Magnesium, and Zinc Bonds in Carbene⋯MX 2 (M = Be, Mg, Zn; X = H, Br) Dimers Revealed by the IQA, ETS-NOCV and LED Methods. Int J Mol Sci 2022; 23:ijms232314668. [PMID: 36498996 PMCID: PMC9738500 DOI: 10.3390/ijms232314668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The nature of beryllium−, magnesium− and zinc−carbene bonds in the cyclopropenylidene⋯MX2 (M = Be, Mg, Zn; X = H, Br) and imidazol-2-ylidene⋯MBr2 dimers is investigated by the joint use of the topological QTAIM-based IQA decomposition scheme, the molecular orbital-based ETS-NOCV charge and energy decomposition method, and the LED energy decomposition approach based on the state-of-the-art DLPNO-CCSD(T) method. All these methods show that the C⋯M bond strengthens according to the following order: Zn < Mg << Be. Electrostatics is proved to be the dominant bond component, whereas the orbital component is far less important. It is shown that QTAIM/IQA underestimates electrostatic contribution for zinc bonds with respect to both ETS-NOCV and LED schemes. The σ carbene→MX2 donation appears to be much more important than the MX2→ carbene back-donation of π symmetry. The substitution of hydrogen atoms by bromine (X in MX2) strengthens the metal−carbene bond in all cases. The physical origin of rotational barriers has been unveiled by the ETS-NOCV approach.
Collapse
|
7
|
Jabłoński M. On the Coexistence of the Carbene⋯H-D Hydrogen Bond and Other Accompanying Interactions in Forty Dimers of N-Heterocyclic-Carbenes (I, IMe 2, I iPr 2, I tBu 2, IMes 2, IDipp 2, IAd 2; I = imidazol-2-ylidene) and Some Fundamental Proton Donors (HF, HCN, H 2O, MeOH, NH 3). Molecules 2022; 27:molecules27175712. [PMID: 36080481 PMCID: PMC9457876 DOI: 10.3390/molecules27175712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The subject of research is forty dimers formed by imidazol-2-ylidene (I) or its derivative (IR2) obtained by replacing the hydrogen atoms in both N-H bonds with larger important and popular substituents of increasing complexity (methyl = Me, iso-propyl = iPr, tert-butyl = tBu, phenyl = Ph, mesityl = Mes, 2,6-diisopropylphenyl = Dipp, 1-adamantyl = Ad) and fundamental proton donor (HD) molecules (HF, HCN, H2O, MeOH, NH3). While the main goal is to characterize the generally dominant C⋯H-D hydrogen bond engaging a carbene carbon atom, an equally important issue is the often omitted analysis of the role of accompanying secondary interactions. Despite the often completely different binding possibilities of the considered carbenes, and especially HD molecules, several general trends are found. Namely, for a given carbene, the dissociation energy values of the IR2⋯HD dimers increase in the following order: NH3< H2O < HCN ≤ MeOH ≪ HF. Importantly, it is found that, for a given HD molecule, IDipp2 forms the strongest dimers. This is attributed to the multiplicity of various interactions accompanying the dominant C⋯H-D hydrogen bond. It is shown that substitution of hydrogen atoms in both N-H bonds of the imidazol-2-ylidene molecule by the investigated groups leads to stronger dimers with HF, HCN, H2O or MeOH. The presented results should contribute to increasing the knowledge about the carbene chemistry and the role of intermolecular interactions, including secondary ones.
Collapse
Affiliation(s)
- Mirosław Jabłoński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, ul. Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
8
|
|
9
|
Liu N, Wu Q, Li Q, Scheiner S. Promotion of TH 3 (T = Si and Ge) group transfer within a tetrel bond by a cation-π interaction. Phys Chem Chem Phys 2022; 24:1113-1119. [PMID: 34927648 DOI: 10.1039/d1cp05323j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The possibility of the transfer of the TH3 group across a tetrel bond is considered by ab initio calculations. The TB is constructed by pairing PhTH3 (Ph = phenyl; T = Si and Ge) with bases NH3, NHCH2, and the C3N2H4 carbene. The TH3 moves toward the base but only by a small amount in these dimers. However, when a Be2+ or Mg2+ dication is placed above the phenyl ring, the tetrel bond strength is greatly magnified reaching up to nearly 100 kcal mol-1. This dication also induces a much higher degree of transfer which can be best categorized as half-transfer for the two N-bases and a near complete transfer for the carbene.
Collapse
Affiliation(s)
- Na Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Qiaozhuo Wu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| |
Collapse
|
10
|
Wu Q, Xie X, Li Q, Scheiner S. Enhancement of tetrel bond involving tetrazole-TtR 3 (Tt = C, Si; R = H, F). Promotion of SiR 3 transfer by a triel bond. Phys Chem Chem Phys 2022; 24:25895-25903. [DOI: 10.1039/d2cp04194d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The combination of a CR3 (R = H, F) with a tetrazole can result in a moderate carbon bond, which can be further strengthened by a triel bond. On the other hand, SiR3 group is half transferred between the two N atoms in these conditions.
Collapse
Affiliation(s)
- Qiaozhuo Wu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xiaoying Xie
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| |
Collapse
|
11
|
An X, Yang X, Li Q. Tetrel Bonds between Phenyltrifluorosilane and Dimethyl Sulfoxide: Influence of Basis Sets, Substitution and Competition. Molecules 2021; 26:molecules26237231. [PMID: 34885810 PMCID: PMC8658981 DOI: 10.3390/molecules26237231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Ab initio calculations have been performed for the complexes of DMSO and phenyltrifluorosilane (PTS) and its derivatives with a substituent of NH3, OCH3, CH3, OH, F, CHO, CN, NO2, and SO3H. It is necessary to use sufficiently flexible basis sets, such as aug’-cc-pVTZ, to get reliable results for the Si···O tetrel bonds. The tetrel bond in these complexes has been characterized in views of geometries, interaction energies, orbital interactions and topological parameters. The electron-donating group in PTS weakens this interaction and the electron-withdrawing group prominently strengthens it to the point where it exceeds that of the majority of hydrogen bonds. The largest interaction energy occurs in the p-HO3S-PhSiF3···DMSO complex, amounting to −122 kJ/mol. The strong Si···O tetrel bond depends to a large extent on the charge transfer from the O lone pair into the empty p orbital of Si, although it has a dominant electrostatic character. For the PTS derivatives of NH2, OH, CHO and NO2, the hydrogen bonded complex is favorable to the tetrel bonded complex for the NH2 and OH derivatives, while the σ-hole interaction prefers the π-hole interaction for the CHO and NO2 derivatives.
Collapse
Affiliation(s)
- Xiulin An
- College of Life Science, Yantai University, Yantai 264005, China;
| | - Xin Yang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China;
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China;
- Correspondence:
| |
Collapse
|
12
|
Abedini N, Kassaee MZ. The effects of halogen substituents on structure, stability, and electronic properties of bicyclo[1.1.1]pentanylene at density functional theory. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Liu N, Xie X, Li Q, Scheiner S. Enhancement of the Tetrel Bond by the Effects of Substituents, Cooperativity, and Electric Field: Transition from Noncovalent to Covalent Bond. Chemphyschem 2021; 22:2305-2312. [PMID: 34436816 DOI: 10.1002/cphc.202100612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 12/14/2022]
Abstract
The T⋅⋅⋅N tetrel bond (TB) formed between TX3 OH (T=C, Si, Ge; X=H, F) and the Lewis base N≡CM (M=H, Li, Na) is studied by ab initio calculations at the MP2/aug-cc-pVTZ level. Complexes involving TH3 OH contain a conventional TB with interaction energy less than 10 kcal/mol. This bond is substantially strengthened, approaching 35 kcal/mol and covalent character, when fluorosubstituted TF3 OH is combined with NCLi or NCNa. Along with this enhanced binding comes a near equalization of the TB T⋅⋅⋅N and the internal T-O bond lengths, and the associated structure acquires a trigonal bipyramidal shape, despite a high internal deformation energy. This structural transformation becomes more complete, and the TB is further strengthened upon adding an electron acceptor BeCl2 to the Lewis acid and a base to the NCM unit. This same TB strengthening can be accomplished also by imposition of an external electric field.
Collapse
Affiliation(s)
- Na Liu
- Laboratory of Theoretical and Computational Chemistry and, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xiaoying Xie
- Laboratory of Theoretical and Computational Chemistry and, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry and, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| |
Collapse
|
14
|
Yang Q, Zhang X, Li Q. Comparison for Electron Donor Capability of Carbon-Bound Halogens in Tetrel Bonds. ACS OMEGA 2021; 6:29037-29044. [PMID: 34746592 PMCID: PMC8567400 DOI: 10.1021/acsomega.1c04085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The tetrel bond formed by HC≡CX, H2C=CHX, and H3CCH2X (X=F, Cl, Br, I) as an electron donor and TH3F (T=C, Si, Ge) was explored by ab initio calculations. The tetrel bond formed by H3CCH2X is the strongest, as high as -3.45 kcal/mol for the H3CCH2F···GeH3F dimer, followed by H2C=CHX, and the weakest bond is from HC≡CX, where the tetrel bond can be as small as -0.8 kcal/mol. The strength of the tetrel bond increases in the order of C < Si < Ge. For the H3CCH2X and HC≡CX complexes, the tetrel bond strength shows a similar increasing tendency with the decrease of the electronegativity of the halogen atom. Electrostatic interaction plays the largest role in the stronger tetrel bonds, while dispersion interaction makes an important contribution to the H2C=CHX complexes.
Collapse
Affiliation(s)
- Qingqing Yang
- The Laboratory of Theoretical
and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Xiaolong Zhang
- The Laboratory of Theoretical
and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical
and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| |
Collapse
|
15
|
Zhao C, Lin H, Shan A, Guo S, Li X, Zhang X. Theoretical study on the noncovalent interactions involving triplet diphenylcarbene. J Mol Model 2021; 27:224. [PMID: 34244865 DOI: 10.1007/s00894-021-04838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
The properties of some types of noncovalent interactions formed by triplet diphenylcarbene (DPC3) have been investigated by means of density functional theory (DFT) calculations and quantum theory of atoms in molecule (QTAIM) studies. The DPC3···LA (LA = AlF3, SiF4, PF5, SF2, ClF) complexes have been analyzed from their equilibrium geometries, binding energies, and properties of electron density. The triel bond in the DPC3···AlF3 complex exhibits a partially covalent nature, with the binding energy - 65.7 kJ/mol. The tetrel bond, pnicogen bond, chalcogen bond, and halogen bond in the DPC3···LA (LA = SiF4, PF5, SF2, ClF) complexes show the character of a weak closed-shell noncovalent interaction. Polarization plays an important role in the formation of the studied complexes. The strength of intermolecular interaction decreases in the order LA = AlF3 > ClF > SF2 > SiF4 > PF5. The electron spin density transfers from the radical DPC3 to ClF and SF2 in the formation of halogen bond and chalcogen bond, but for the DPC3···AlF3/SiF4/PF5 complexes, the transfer of electron spin density is minimal.
Collapse
Affiliation(s)
- Chunhong Zhao
- Huihua College of Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Hui Lin
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Aiting Shan
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Shaofu Guo
- Huihua College of Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xueying Zhang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China.
| |
Collapse
|
16
|
Liu N, Liu J, Li Q, Scheiner S. Noncovalent bond between tetrel π-hole and hydride. Phys Chem Chem Phys 2021; 23:10536-10544. [PMID: 33899891 DOI: 10.1039/d1cp01245b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The π-hole above the plane of the X2T'Y molecule (T' = Si, Ge, Sn; X = F, Cl, H; Y = O, S) was allowed to interact with the TH hydride of TH(CH3)3 (T = Si, Ge, Sn). The resulting THT' tetrel bond is quite strong, with interaction energies exceeding 30 kcal mol-1. F2T'O engages in the strongest such bonds, as compared to F2T'S, Cl2T'O, or Cl2T'S. The bond weakens as T' grows larger as in Si > Ge > Sn, despite the opposite trend in the depth of the π-hole. The reverse pattern of stronger tetrel bond with larger T is observed for the Lewis base TH(CH3)3, even though the minimum in the electrostatic potential around the H is nearly independent of T. The THT' arrangement is nonlinear which can be understood on the basis of the positions of the extrema in the molecular electrostatic potentials of the monomers. The tetrel bond is weakened when H2O forms an OT' tetrel bond with the second π-hole of F2T'O, and strengthened if H2O participates in an OHO H-bond.
Collapse
Affiliation(s)
- Na Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Jiaxing Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| |
Collapse
|
17
|
Jabłoński M. Study of Beryllium, Magnesium, and Spodium Bonds to Carbenes and Carbodiphosphoranes. Molecules 2021; 26:2275. [PMID: 33920004 PMCID: PMC8071025 DOI: 10.3390/molecules26082275] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this article is to present results of theoretical study on the properties of C⋯M bonds, where C is either a carbene or carbodiphosphorane carbon atom and M is an acidic center of MX2 (M = Be, Mg, Zn). Due to the rarity of theoretical data regarding the C⋯Zn bond (i.e., the zinc bond), the main focus is placed on comparing the characteristics of this interaction with C⋯Be (beryllium bond) and C⋯Mg (magnesium bond). For this purpose, theoretical studies (ωB97X-D/6-311++G(2df,2p)) have been performed for a large group of dimers formed by MX2 (X = H, F, Cl, Br, Me) and either a carbene ((NH2)2C, imidazol-2-ylidene, imidazolidin-2-ylidene, tetrahydropyrymid-2-ylidene, cyclopropenylidene) or carbodiphosphorane ((PH3)2C, (NH3)2C) molecule. The investigated dimers are characterized by a very strong charge transfer effect from either the carbene or carbodiphosphorane molecule to the MX2 one. This may even be over six times as strong as in the water dimer. According to the QTAIM and NCI method, the zinc bond is not very different than the beryllium bond, with both featuring a significant covalent contribution. However, the zinc bond should be definitely stronger if delocalization index is considered.
Collapse
Affiliation(s)
- Mirosław Jabłoński
- Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
| |
Collapse
|
18
|
Intermolecular interactions between the heavy alkenes H 2Si = TH 2 (T = C, Si, Ge, Sn, Pb) and acetylene. J Mol Model 2021; 27:110. [PMID: 33743078 DOI: 10.1007/s00894-021-04738-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
The intermolecular interactions between the heavy alkenes H2Si = TH2 (T = C, Si, Ge, Sn, Pb) and C2H2 have been calculated at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level, and the nature of these complexes has been investigated by natural bond orbital. The four types (type-A, type-B, type-C and type-D) of complexes can be located for H2Si = TH2···C2H2 system. The complexes involving H2Si = TH2···C2F2 and H2Si = TH2···C2(CN)2 have also been examined to explore the substituent effects. Some complexes which are stable for H2Si = TH2···C2H2 system become unstable for H2Si = TH2···C2F2 or H2Si = TH2···C2(CN)2 system, while other complexes which are unstable for H2Si = TH2···C2H2 system become stable for H2Si = TH2···C2F2 or H2Si = TH2···C2(CN)2 system.
Collapse
|
19
|
Abstract
The tetrel bond (TB) recruits an element drawn from the C, Si, Ge, Sn, Pb family as electron acceptor in an interaction with a partner Lewis base. The underlying principles that explain this attractive interaction are described in terms of occupied and vacant orbitals, total electron density, and electrostatic potential. These principles facilitate a delineation of the factors that feed into a strong TB. The geometric deformation that occurs within the tetrel-bearing Lewis acid monomer is a particularly important issue, with both primary and secondary effects. As a first-row atom of low polarizability, C is a reluctant participant in TBs, but its preponderance in organic and biochemistry make it extremely important that its potential in this regard be thoroughly understood. The IR and NMR manifestations of tetrel bonding are explored as spectroscopy offers a bridge to experimental examination of this phenomenon. In addition to the most common σ-hole type TBs, discussion is provided of π-hole interactions which are a result of a common alternate covalent bonding pattern of tetrel atoms.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| |
Collapse
|
20
|
|
21
|
Chen Y, Wang F. Intermolecular Interactions Involving Heavy Alkenes H 2Si=TH 2 (T = C, Si, Ge, Sn, Pb) with H 2O and HCl: Tetrel Bond and Hydrogen Bond. ACS OMEGA 2020; 5:30210-30225. [PMID: 33251455 PMCID: PMC7689927 DOI: 10.1021/acsomega.0c04682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
The intermolecular interactions between the heavy alkenes H2Si=TH2 (T = C, Si, Ge, Sn, Pb) and H2O or HCl have been explored at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level. The various hydrogen bond (HB) and tetrel bond (TB) complexes can be located on the basis of molecular electrostatic potential maps of the isolated monomers. The competition between TB and HB interactions has been investigated through the relaxed potential energy surface scan. The results indicate that the HB complexes become more and more unstable relative to the TB complexes with the increase of the T atomic number, and cannot even retain as a minimum in some cases, for H2Si=TH2···H2O systems. In contrast, the HB complexes are generally more stable than TB complexes, and the TB complexes exhibit rather weak binding strength, for H2Si=TH2···HCl systems. The majority of the TB complexes formed between H2Si=TH2 and H2O possesses very strong binding strength with covalent characteristics. The noncovalent TB complexes can be divided into two types on the basis of the orbital interactions: π-hole complexes, with binding angles ranging from 91 to 111°, and hybrid σ/π-hole complexes, with binding angles ranging from 130 to 165°. The interplay between different molecular interactions has been explored, and an interesting result is that the covalent TB interaction is significantly abated and becomes noncovalent because of the competitive effect.
Collapse
|
22
|
An X, Han J. Influence of alkali substituents on the strength, properties, and nature of tetrel bond between TH 3F and pyridine. J Mol Model 2020; 26:224. [PMID: 32778949 DOI: 10.1007/s00894-020-04499-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/03/2020] [Indexed: 01/31/2023]
Abstract
Ab initio calculations have been performed for the complexes of TH3F (T=C, Si, and Ge) with pyridine and its alkali derivatives to study the influence of an alkali substituent on the strength, properties, and nature of tetrel bond. The introduction of an alkali atom into the electron donor has a prominent enhancing effect on the strength of tetrel bond, which depends on the T atom as well as the alkali atom and its substitution position. The enhancing effect becomes larger in the C < Ge < Si, Li < Na < K, and para- < meta- < ortho- patterns. The interaction energy varies in a wide range from 2 to 40 kcal/mol. Both electrostatic and polarization including charge transfer are responsible for the enhancing effect of an alkali atom. The formation of a tetrel bond results in an elongation of F-T bond and a red shift of F-T stretch vibration, which is big enough to be detected with infrared spectroscopy. Electrostatic interaction is dominant in all complexes, while polarization is smaller or larger than dispersion in the complexes of CH3F or TH3F(T=Si and Ge).
Collapse
Affiliation(s)
- Xiulin An
- College of Life Science, Yantai University, Yantai, 264005, People's Republic of China.
| | - Jianqu Han
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
23
|
Abedini N, Kassaee MZ, Cummings PT. Effects of nitrogen atoms on the stability and reactivity of tricyclic boracarbenes by DFT. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02659-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Synergistic and antagonistic interplay between tetrel bond and pnicogen bond in complexes involving ring compounds. J Mol Model 2019; 25:351. [DOI: 10.1007/s00894-019-4206-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
|
25
|
Hou M, Jin K, Li Q, Liu S. Systematic study of the substitution effect on the tetrel bond between 1,4-diazabicyclo[2.2.2]octane and TH 3X. RSC Adv 2019; 9:18459-18466. [PMID: 35515262 PMCID: PMC9064731 DOI: 10.1039/c9ra03351c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/03/2019] [Indexed: 11/21/2022] Open
Abstract
A tetrel bond was characterized in the complexes of 1,4-diazabicyclo[2.2.2]octane (DABCO) with TH3X (T = C, Si, Ge; X= -Me, -H, -OH, -NH2, -F, -Cl, -Br, -I, -CN, -NO2). DABCO engages in a weak tetrel bond with CH3X but a stronger one with SiH3X and GeH3X. SiH3X is favorable to bind with DABCO relative to GeH3X, inconsistent with the magnitude of the σ-hole on the tetrel atom. The methyl group in the tetrel donor weakens the tetrel bond but an enhancing effect is found for the other substituents, particularly -NO2. The substitution effect is also related to the nature of the tetrel atom. The halogen substitution from F to I has a weakening effect in the CH3X complex but an enhancing effect in the SiH3X complex and a negligible effect in the GeH3X complex. The above abnormal results found in these complexes can be partly attributed to the charge transfer from the lone pair on the nitrogen atom of DABCO into the anti-bonding orbital σ*(T-X) of TH3X. The stability of both SiH3X and GeH3X complexes is primarily controlled by electrostatic interactions and polarization.
Collapse
Affiliation(s)
- Mingchang Hou
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 People's Republic of China
| | - Kunyu Jin
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 People's Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 People's Republic of China
| | - Shufeng Liu
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 PR China
| |
Collapse
|
26
|
Michalczyk M, Zierkiewicz W, Wysokiński R, Scheiner S. Hexacoordinated Tetrel‐Bonded Complexes between TF4(T=Si, Ge, Sn, Pb) and NCH: Competition between σ‐ and π‐Holes. Chemphyschem 2019; 20:959-966. [DOI: 10.1002/cphc.201900072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 02/15/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Mariusz Michalczyk
- Faculty of ChemistryWrocław University of Science and Technology Wybrzeże, Wyspiańskiego 27 50-370 Wrocław Poland
| | - Wiktor Zierkiewicz
- Faculty of ChemistryWrocław University of Science and Technology Wybrzeże, Wyspiańskiego 27 50-370 Wrocław Poland
| | - Rafał Wysokiński
- Faculty of ChemistryWrocław University of Science and Technology Wybrzeże, Wyspiańskiego 27 50-370 Wrocław Poland
| | - Steve Scheiner
- Department of Chemistry and BiochemistryUtah State University Logan, Utah 84322-0300 United States
| |
Collapse
|
27
|
Affiliation(s)
- Mirosław Jabłoński
- Department of Quantum Chemistry, Faculty of ChemistryNicolaus Copernicus University in Toruń 7‐Gagarina St. Toruń 87‐100 Poland
| |
Collapse
|
28
|
Dong W, Niu B, Liu S, Cheng J, Liu S, Li Q. Comparison of σ‐/π‐Hole Tetrel Bonds between TH
3
F/F
2
TO and H
2
CX (X=O, S, Se). Chemphyschem 2019; 20:627-635. [DOI: 10.1002/cphc.201800990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/10/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Wenbo Dong
- Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical EngineeringYantai University Yantai 264005 People's Republic of China
| | - Bingbo Niu
- Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical EngineeringYantai University Yantai 264005 People's Republic of China
| | - Shufeng Liu
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 PR China
| | - Jianbo Cheng
- Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical EngineeringYantai University Yantai 264005 People's Republic of China
| | - Shaoli Liu
- Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical EngineeringYantai University Yantai 264005 People's Republic of China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical EngineeringYantai University Yantai 264005 People's Republic of China
| |
Collapse
|
29
|
Lin H, Meng L, Li X, Zeng Y, Zhang X. Comparison of pnicogen and tetrel bonds in complexes containing CX2 carbenes (X = F, Cl, Br, OH, OMe, NH2, and NMe2). NEW J CHEM 2019. [DOI: 10.1039/c9nj03397a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The similarities and differences of pnicogen and tetrel bonds formed by carbenes CX2 with H3AsO and H3SiCN were investigated by carrying out ab initio calculations in association with topological analysis of electron density.
Collapse
Affiliation(s)
- Hui Lin
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Lingpeng Meng
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
- National Demonstration Center for Experimental Chemistry
| | - Xiaoyan Li
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
- National Demonstration Center for Experimental Chemistry
| | - Yanli Zeng
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
- National Demonstration Center for Experimental Chemistry
| | - Xueying Zhang
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
- National Demonstration Center for Experimental Chemistry
| |
Collapse
|
30
|
Wysokiński R, Michalczyk M, Zierkiewicz W, Scheiner S. Influence of monomer deformation on the competition between two types of σ-holes in tetrel bonds. Phys Chem Chem Phys 2019; 21:10336-10346. [DOI: 10.1039/c9cp01759c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Competition between two competing sites on a tetrel atom is explained by balance between structural deformation and σ-hole intensity.
Collapse
Affiliation(s)
- Rafał Wysokiński
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
31
|
Sethio D, Oliveira V, Kraka E. Quantitative Assessment of Tetrel Bonding Utilizing Vibrational Spectroscopy. Molecules 2018; 23:E2763. [PMID: 30366391 PMCID: PMC6278569 DOI: 10.3390/molecules23112763] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 01/15/2023] Open
Abstract
A set of 35 representative neutral and charged tetrel complexes was investigated with the objective of finding the factors that influence the strength of tetrel bonding involving single bonded C, Si, and Ge donors and double bonded C or Si donors. For the first time, we introduced an intrinsic bond strength measure for tetrel bonding, derived from calculated vibrational spectroscopy data obtained at the CCSD(T)/aug-cc-pVTZ level of theory and used this measure to rationalize and order the tetrel bonds. Our study revealed that the strength of tetrel bonds is affected by several factors, such as the magnitude of the σ-hole in the tetrel atom, the negative electrostatic potential at the lone pair of the tetrel-acceptor, the positive charge at the peripheral hydrogen of the tetrel-donor, the exchange-repulsion between the lone pair orbitals of the peripheral atoms of the tetrel-donor and the heteroatom of the tetrel-acceptor, and the stabilization brought about by electron delocalization. Thus, focusing on just one or two of these factors, in particular, the σ-hole description can only lead to an incomplete picture. Tetrel bonding covers a range of -1.4 to -26 kcal/mol, which can be strengthened by substituting the peripheral ligands with electron-withdrawing substituents and by positively charged tetrel-donors or negatively charged tetrel-acceptors.
Collapse
Affiliation(s)
- Daniel Sethio
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA.
| | - Vytor Oliveira
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA.
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA.
| |
Collapse
|
32
|
Ponikvar-Svet M, Zeiger DN, Liebman JF. Interplay of thermochemistry and Structural Chemistry, the journal (volume 28, 2017, issues 3–4) and the discipline. Struct Chem 2018. [DOI: 10.1007/s11224-018-1137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
33
|
Xu H, Cheng J, Yu X, Li Q. Abnormal Tetrel Bonds between Formamidine and TH3
F: Substituent Effects. ChemistrySelect 2018. [DOI: 10.1002/slct.201800025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huili Xu
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering; Yantai University; Yantai 264005 China
| | - Jianbo Cheng
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering; Yantai University; Yantai 264005 China
| | - Xuefang Yu
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering; Yantai University; Yantai 264005 China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering; Yantai University; Yantai 264005 China
| |
Collapse
|
34
|
Wei Y, Li Q, Scheiner S. The π-Tetrel Bond and its Influence on Hydrogen Bonding and Proton Transfer. Chemphyschem 2018; 19:736-743. [DOI: 10.1002/cphc.201701136] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/27/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanxin Wei
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering; Yantai University; Yantai 264005 China), Fax: (+86) 535-6902063
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering; Yantai University; Yantai 264005 China), Fax: (+86) 535-6902063
| | - Steve Scheiner
- Department of Chemistry and Biochemistry; Utah State University; Logan UT 84322-0300 USA
| |
Collapse
|
35
|
Wei Y, Li Q, Yang X, McDowell SAC. Intramolecular Si⋅⋅⋅O Tetrel Bonding: Tuning of Substituents and Cooperativity. ChemistrySelect 2017. [DOI: 10.1002/slct.201702280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuanxin Wei
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering,; Yantai University,; Yantai 264005 China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering,; Yantai University,; Yantai 264005 China
| | - Xin Yang
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering,; Yantai University,; Yantai 264005 China
| | - Sean A. C. McDowell
- Department of Biological and Chemical Sciences; The University of the West Indies, Cave Hill Campus; Barbados
| |
Collapse
|
36
|
Del Bene JE, Alkorta I, Elguero J. Carbon–Carbon Bonding between Nitrogen Heterocyclic Carbenes and CO2. J Phys Chem A 2017; 121:8136-8146. [DOI: 10.1021/acs.jpca.7b08393] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Janet E. Del Bene
- Department
of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| | - Ibon Alkorta
- Instituto
de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - José Elguero
- Instituto
de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
| |
Collapse
|
37
|
Affiliation(s)
- Yuanxin Wei
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| |
Collapse
|
38
|
Scheiner S. Systematic Elucidation of Factors That Influence the Strength of Tetrel Bonds. J Phys Chem A 2017; 121:5561-5568. [DOI: 10.1021/acs.jpca.7b05300] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
39
|
Del Bene JE, Alkorta I, Elguero J. Carbenes as Electron-Pair Donors for P⋅⋅⋅C Pnicogen Bonds. Chemphyschem 2017; 18:1597-1610. [DOI: 10.1002/cphc.201700187] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/24/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Janet E. Del Bene
- Department of Chemistry; Youngstown State University; Youngstown Ohio 44555 USA
| | - Ibon Alkorta
- Instituto de Química Médica ( IQM-CSIC); Juan de la Cierva, 3 E-28006 Madrid Spain
| | - José Elguero
- Instituto de Química Médica ( IQM-CSIC); Juan de la Cierva, 3 E-28006 Madrid Spain
| |
Collapse
|
40
|
Affiliation(s)
- Mehdi D. Esrafili
- Department of Chemistry, Laboratory of Theoretical Chemistry, University of Maragheh, Maragheh, Iran
| | - Ayda Sabouri
- Department of Chemistry, Laboratory of Theoretical Chemistry, University of Maragheh, Maragheh, Iran
| |
Collapse
|