1
|
Phan Dang CT, Tam NM, Huynh TN, Trung NT. Revisiting conventional noncovalent interactions towards a complete understanding: from tetrel to pnicogen, chalcogen, and halogen bond. RSC Adv 2023; 13:31507-31517. [PMID: 37901266 PMCID: PMC10606978 DOI: 10.1039/d3ra06078k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Typical noncovalent interactions, including tetrel (TtB), pnicogen (PniB), chalcogen (ChalB), and halogen bonds (HalB), were systematically re-investigated by modeling the N⋯Z interactions (Z = Si, P, S, Cl) between NH3 - as a nucleophilic, and SiF4, PF3, SF2, and ClF - as electrophilic components, employing highly reliable ab initio methods. The characteristics of N⋯Z interactions when Z goes from Si to Cl, were examined through their changes in stability, vibrational spectroscopy, electron density, and natural orbital analyses. The binding energies of these complexes at CCSD(T)/CBS indicate that NH3 tends to hold tightly most with ClF (-34.7 kJ mol-1) and SiF4 (-23.7 kJ mol-1) to form N⋯Cl HalB and N⋯Si TtB, respectively. Remarkably, the interaction energies obtained from various approaches imply that the strength of these noncovalent interactions follows the order: N⋯Si TtB > N⋯Cl HalB > N⋯S ChalB > N⋯P PniB, that differs the order of their corresponding complex stability. The conventional N⋯Z noncovalent interactions are characterized by the local vibrational frequencies of 351, 126, 167, and 261 cm-1 for TtB, PniB, ChalB, and HalB, respectively. The SAPT2+(3)dMP2 calculations demonstrate that the primary force controlling their strength retains the electrostatic term. Accompanied by the stronger strength of N⋯Si TtB and N⋯Cl HalB, the AIM and NBO results state that they are partly covalent in nature with amounts of 18.57% and 27.53%, respectively. Among various analysis approaches, the force constant of the local N⋯Z stretching vibration is shown to be most accurate in describing the noncovalent interactions.
Collapse
Affiliation(s)
- Cam-Tu Phan Dang
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen Minh Tam
- Faculty of Basic Sciences, University of Phan Thiet 225 Nguyen Thong Phan Thiet City Binh Thuan Vietnam
| | - Thanh-Nam Huynh
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen 76344 Germany
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling (LCCM), Quy Nhon University Quy Nhon City 590000 Vietnam
| |
Collapse
|
2
|
Das A, Arunan E. Unified classification of non-covalent bonds formed by main group elements: a bridge to chemical bonding. Phys Chem Chem Phys 2023; 25:22583-22594. [PMID: 37435670 DOI: 10.1039/d3cp00370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Using correlation plots of binding energy and electron density at the bond critical point, we investigated the nature of intermolecular non-covalent bonds (D-X⋯A, where D = O/S/F/Cl/Br/H, mostly, X = main group elements (except noble gases), A = H2O, NH3, H2S, PH3, HCHO, C2H4, HCN, CO, CH3OH, and CH3OCH3). The binding energies were calculated at the MP2 level of theory, followed by Atoms in Molecules (AIM) analysis of the ab initio wave functions to obtain the electron density at the bond critical point (BCP). For each non-covalent bond, the slopes of the binding energy versus electron density plot have been determined. Based on their slopes, non-covalent bonds are classified as non-covalent bond closed-shell (NCB-C) or non-covalent bond shared-shell (NCB-S). Intriguingly, extrapolating the slopes of the NCB-C and NCB-S cases leads to intramolecular "ionic" and "covalent" bonding regimes, establishing a link between such intermolecular non-covalent and intramolecular chemical bonds. With this new classification, hydrogen bonds and other non-covalent bonds formed by a main-group atom in a covalent molecule are classified as NCB-S. Atoms found in ionic molecules generally form NCB-C type bonds, with the exception of carbon which also forms NCB-C type bonds. Molecules with a tetravalent carbon do behave like ions in ionic molecules such as NaCl and interact with other molecules through NCB-C type bonds. As with the chemical bonds, there are some non-covalent bonds that are intermediate cases.
Collapse
Affiliation(s)
- Arijit Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Elangannan Arunan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
3
|
Leyla C, Fatiha M, Leila N, Rabah O. Solubility and Antioxidant Activity of 1,2-Dihydro-2-Methyl-2-Phenyl-3H-Indole-3-One-1-Oxyl Hosted at Randomly Methylated-Βétacyclodextrin: A Computational Investigation. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2146148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Chekatti Leyla
- Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, Laboratory of Computational Chemistry and Nanostructures, University of 8 Mai 1945, Guelma, Algeria
- Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, Laboratory of Industrial Analysis and Materials Engineering, University of 8 Mai 1945, Guelma, Algeria
| | - Madi Fatiha
- Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, Laboratory of Computational Chemistry and Nanostructures, University of 8 Mai 1945, Guelma, Algeria
| | - Nouar Leila
- Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, Laboratory of Computational Chemistry and Nanostructures, University of 8 Mai 1945, Guelma, Algeria
| | - Oumeddour Rabah
- Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, Laboratory of Industrial Analysis and Materials Engineering, University of 8 Mai 1945, Guelma, Algeria
| |
Collapse
|
4
|
Bhattarai S, Sutradhar D, Chandra AK. Strongly Bound π-Hole Tetrel Bonded Complexes between H2SiO and Substituted Pyridines. Influence of Substituents. Chemphyschem 2022; 23:e202200146. [PMID: 35362233 DOI: 10.1002/cphc.202200146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/21/2022] [Indexed: 11/08/2022]
Abstract
Ab initio calculation at the MP2/aug-cc-pVTZ level has been performed on the π-hole based N … Si tetrel bonded complexes between substituted pyridines and H 2 SiO. The primary aim of the study is to find out the effect of substitution on the strength and nature of this tetrel bond, and its similarity/difference with the N … C tetrel bond. Correlation between the strength of the N … Si bond and several molecular properties of the Lewis acid (H 2 SiO) and base (pyridines) are explored. The properties of the tetrel bond are analyzed using AIM, NBO, and symmetry-adapted perturbation theory calculations. The complexes are characterized with short N … Si intermolecular distances and high binding energies ranging between -142.72 and -115.37 kJ/mol. The high value of deformation energy indicates significant geometrical distortion of the monomer units. The AIM and NBO analysis reveal significant coordinate covalent bond character of the N … Si π-hole bond. Sharp differences are also noticed in the orbital interactions present in the N … Si and N … C tetrel bonds.
Collapse
Affiliation(s)
- Sumitra Bhattarai
- North-Eastern Hill University, Chemistry, Mawlai, 793022, Shillong, INDIA
| | - Dipankar Sutradhar
- VIT University, School of Advanced Science & Language, 466114, Bhopal, INDIA
| | - Asit K Chandra
- North Eastern Hill University, Chemistry, Umshing, 793022, Shillong, INDIA
| |
Collapse
|
5
|
Salma A, Fatiha M, Leila N. Effect of solvent on absorption and emission spectra of 2,2′-Bipyridine and its inclusion complexinto β-cyclodextrin: DFT and TD-DFT study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Meryem G, Rabah K, Fatiha M, Leila N, Aziz BA, Imane D, Rachid M. Computational investigation of vanillin@βéta-cyclodextrin inclusion complex: Electronic and intermolecular analysis. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Abstract
The tetrel bond (TB) recruits an element drawn from the C, Si, Ge, Sn, Pb family as electron acceptor in an interaction with a partner Lewis base. The underlying principles that explain this attractive interaction are described in terms of occupied and vacant orbitals, total electron density, and electrostatic potential. These principles facilitate a delineation of the factors that feed into a strong TB. The geometric deformation that occurs within the tetrel-bearing Lewis acid monomer is a particularly important issue, with both primary and secondary effects. As a first-row atom of low polarizability, C is a reluctant participant in TBs, but its preponderance in organic and biochemistry make it extremely important that its potential in this regard be thoroughly understood. The IR and NMR manifestations of tetrel bonding are explored as spectroscopy offers a bridge to experimental examination of this phenomenon. In addition to the most common σ-hole type TBs, discussion is provided of π-hole interactions which are a result of a common alternate covalent bonding pattern of tetrel atoms.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| |
Collapse
|
8
|
Abstract
The fundamental underpinnings of noncovalent bonds are presented, focusing on the σ-hole interactions that are closely related to the H-bond. Different means of assessing their strength and the factors that control it are discussed. The establishment of a noncovalent bond is monitored as the two subunits are brought together, allowing the electrostatic, charge redistribution, and other effects to slowly take hold. Methods are discussed that permit prediction as to which site an approaching nucleophile will be drawn, and the maximum number of bonds around a central atom in its normal or hypervalent states is assessed. The manner in which a pair of anions can be held together despite an overall Coulombic repulsion is explained. The possibility that first-row atoms can participate in such bonds is discussed, along with the introduction of a tetrel analog of the dihydrogen bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
9
|
Grabarz A, Michalczyk M, Zierkiewicz W, Scheiner S. Noncovalent Bonds between Tetrel Atoms. Chemphyschem 2020; 21:1934-1944. [DOI: 10.1002/cphc.202000444] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Grabarz
- Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry Utah State University Logan Utah 84322-0300 United States
| |
Collapse
|
10
|
de Oliveira BG, Zabardasti A, do Rego DG, Pour MM. The formation of H···X hydrogen bond, C···X carbon-halide or Si···X tetrel bonds on the silylene-halogen dimers (X = F or Cl): intermolecular strength, molecular orbital interactions and prediction of covalency. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02644-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Ponikvar-Svet M, Zeiger DN, Liebman JF. Interplay of thermochemistry and Structural Chemistry: the journal (volume 29, 2018, issues 5–6) and the discipline. Struct Chem 2019. [DOI: 10.1007/s11224-019-01398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Enhancing effects of π-hole tetrel bonds on the σ-hole interactions in complexes involving F2TO (T = Si, Ge, Sn). Struct Chem 2019. [DOI: 10.1007/s11224-018-1274-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Sruthi PK, Sarkar S, Ramanathan N, Sundararajan K. Elusive hypervalent phosphorus⋯π interactions: evidence for paradigm transformation from hydrogen to phosphorus bonding at low temperatures. Phys Chem Chem Phys 2019; 21:12250-12264. [DOI: 10.1039/c9cp01925a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A paradigm transformation from hydrogen to phosphorus bonding is found to depend on the proton affinity of the interacting π-systems.
Collapse
Affiliation(s)
- P. K. Sruthi
- Materials Chemistry and Metal Fuel Cycle Group
- Homi Bhabha National Institute
- Indira Gandhi Centre for Atomic Research
- Kalpakkam-603 102
- India
| | - Shubhra Sarkar
- Materials Chemistry and Metal Fuel Cycle Group
- Homi Bhabha National Institute
- Indira Gandhi Centre for Atomic Research
- Kalpakkam-603 102
- India
| | - N. Ramanathan
- Materials Chemistry and Metal Fuel Cycle Group
- Homi Bhabha National Institute
- Indira Gandhi Centre for Atomic Research
- Kalpakkam-603 102
- India
| | - K. Sundararajan
- Materials Chemistry and Metal Fuel Cycle Group
- Homi Bhabha National Institute
- Indira Gandhi Centre for Atomic Research
- Kalpakkam-603 102
- India
| |
Collapse
|
14
|
Caballero-García G, Mondragón-Solórzano G, Torres-Cadena R, Díaz-García M, Sandoval-Lira J, Barroso-Flores J. Calculation of VS,max and Its Use as a Descriptor for the Theoretical Calculation of p Ka Values for Carboxylic Acids. Molecules 2018; 24:molecules24010079. [PMID: 30587832 PMCID: PMC6337188 DOI: 10.3390/molecules24010079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 01/30/2023] Open
Abstract
The theoretical calculation of pKa values for Brønsted acids is a challenging task that involves sophisticated and time-consuming methods. Therefore, heuristic approaches are efficient and appealing methodologies to approximate these values. Herein, we used the maximum surface electrostatic potential (VS,max) on the acidic hydrogen atoms of carboxylic acids to describe the H-bond interaction with water (the same descriptor that is used to characterize σ-bonded complexes) and correlate the results with experimental pKa values to obtain a predictive model for other carboxylic acids. We benchmarked six different methods, all including an implicit solvation model (water): Five density functionals and the Møller–Plesset second order perturbation theory in combination with six different basis sets for a total of thirty-six levels of theory. The ωB97X-D/cc-pVDZ level of theory stood out as the best one for consistently reproducing the reported pKa values, with a predictive power of 98% correlation in a test set of ten other carboxylic acids.
Collapse
Affiliation(s)
- Guillermo Caballero-García
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Unidad San Cayetano, Carretera Toluca⁻Atlacomulco km 14.5, Personal de la UNAM, Toluca 50200, Mexico.
| | - Gustavo Mondragón-Solórzano
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Unidad San Cayetano, Carretera Toluca⁻Atlacomulco km 14.5, Personal de la UNAM, Toluca 50200, Mexico.
| | - Raúl Torres-Cadena
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Unidad San Cayetano, Carretera Toluca⁻Atlacomulco km 14.5, Personal de la UNAM, Toluca 50200, Mexico.
| | - Marco Díaz-García
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Unidad San Cayetano, Carretera Toluca⁻Atlacomulco km 14.5, Personal de la UNAM, Toluca 50200, Mexico.
| | - Jacinto Sandoval-Lira
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Unidad San Cayetano, Carretera Toluca⁻Atlacomulco km 14.5, Personal de la UNAM, Toluca 50200, Mexico.
| | - Joaquín Barroso-Flores
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Unidad San Cayetano, Carretera Toluca⁻Atlacomulco km 14.5, Personal de la UNAM, Toluca 50200, Mexico.
| |
Collapse
|
15
|
Sethio D, Oliveira V, Kraka E. Quantitative Assessment of Tetrel Bonding Utilizing Vibrational Spectroscopy. Molecules 2018; 23:E2763. [PMID: 30366391 PMCID: PMC6278569 DOI: 10.3390/molecules23112763] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 01/15/2023] Open
Abstract
A set of 35 representative neutral and charged tetrel complexes was investigated with the objective of finding the factors that influence the strength of tetrel bonding involving single bonded C, Si, and Ge donors and double bonded C or Si donors. For the first time, we introduced an intrinsic bond strength measure for tetrel bonding, derived from calculated vibrational spectroscopy data obtained at the CCSD(T)/aug-cc-pVTZ level of theory and used this measure to rationalize and order the tetrel bonds. Our study revealed that the strength of tetrel bonds is affected by several factors, such as the magnitude of the σ-hole in the tetrel atom, the negative electrostatic potential at the lone pair of the tetrel-acceptor, the positive charge at the peripheral hydrogen of the tetrel-donor, the exchange-repulsion between the lone pair orbitals of the peripheral atoms of the tetrel-donor and the heteroatom of the tetrel-acceptor, and the stabilization brought about by electron delocalization. Thus, focusing on just one or two of these factors, in particular, the σ-hole description can only lead to an incomplete picture. Tetrel bonding covers a range of -1.4 to -26 kcal/mol, which can be strengthened by substituting the peripheral ligands with electron-withdrawing substituents and by positively charged tetrel-donors or negatively charged tetrel-acceptors.
Collapse
Affiliation(s)
- Daniel Sethio
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA.
| | - Vytor Oliveira
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA.
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA.
| |
Collapse
|