1
|
Hawash M, Jaradat N, Sabobeh R, Abualhasan M, Qaoud MT. New Thiazole Carboxamide Derivatives as COX Inhibitors: Design, Synthesis, Anticancer Screening, In Silico Molecular Docking, and ADME Profile Studies. ACS OMEGA 2023; 8:29512-29526. [PMID: 37599929 PMCID: PMC10433355 DOI: 10.1021/acsomega.3c03256] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
The goal of this work was to create and test a new series of thiazole carboxamide derivatives for their cyclooxygenase (COX) suppressor and anticancer effects. The compounds were characterized using 1H, 13C NMR, and HRMS spectrum analysis, and their selectivity toward COX-1 and COX-2 was assessed using an in vitro COX inhibition assay kit. Cytotoxicity was assessed using an MTS assay against a panel of cancer and normal cell lines. The docking studies were aided by the Prime MM-GBSA method for estimating binding affinities. The density functional theory (DFT) analysis was performed to assess compound chemical reactivity, which was calculated by computing the border orbital energy of both HOMO and LUMO orbitals, as well as the HOMO-LUMO energy gap. For ADME-T analysis, the QiKProp module was employed. Furthermore, using human X-ray crystal structures, molecular docking studies were carried out to discover the probable binding patterns of these drugs within both COX-1 and COX-2 isozymes. The results demonstrated that the most effective compound against the COX-1 enzyme was 2b with an IC50 of 0.239 μM. It also showed potent activity against COX-2 with an IC50 value of 0.191 μM and a selectivity ratio of 1.251. The highest selectivity ratio was 2.766 for compound 2a against COX-2 with an IC50 dose of 0.958 μM relating to the celecoxib ratio of 23.8 and its IC50 against COX-2 of 0.002 μM. Compound 2j also showed good selectivity toward COX-2 (1.507) with an IC50 value of 0.957 μM. All compounds showed negligible cytotoxic activity against the evaluated normal cell lines, and the IC50 values were more than 300 μM, except for compound 2b, whose IC50 values were 203.71 ± 1.89 and 116.96 ± 2.05 μM against LX-2 and Hek293t cell lines, respectively. Moreover, compound 2b showed moderate anticancer activity against COLO205 and B16F1 cancer cell lines with IC50 values of 30.79 and 74.15 μM, respectively.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 400, Palestine
| | - Nidal Jaradat
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 400, Palestine
| | - Rozan Sabobeh
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 400, Palestine
| | - Murad Abualhasan
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 400, Palestine
| | - Mohammed T. Qaoud
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey
| |
Collapse
|
2
|
Pacureanu L, Bora A, Crisan L. New Insights on the Activity and Selectivity of MAO-B Inhibitors through In Silico Methods. Int J Mol Sci 2023; 24:ijms24119583. [PMID: 37298535 DOI: 10.3390/ijms24119583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
To facilitate the identification of novel MAO-B inhibitors, we elaborated a consolidated computational approach, including a pharmacophoric atom-based 3D quantitative structure-activity relationship (QSAR) model, activity cliffs, fingerprint, and molecular docking analysis on a dataset of 126 molecules. An AAHR.2 hypothesis with two hydrogen bond acceptors (A), one hydrophobic (H), and one aromatic ring (R) supplied a statistically significant 3D QSAR model reflected by the parameters: R2 = 0.900 (training set); Q2 = 0.774 and Pearson's R = 0.884 (test set), stability s = 0.736. Hydrophobic and electron-withdrawing fields portrayed the relationships between structural characteristics and inhibitory activity. The quinolin-2-one scaffold has a key role in selectivity towards MAO-B with an AUC of 0.962, as retrieved by ECFP4 analysis. Two activity cliffs showing meaningful potency variation in the MAO-B chemical space were observed. The docking study revealed interactions with crucial residues TYR:435, TYR:326, CYS:172, and GLN:206 responsible for MAO-B activity. Molecular docking is in consensus with and complementary to pharmacophoric 3D QSAR, ECFP4, and MM-GBSA analysis. The computational scenario provided here will assist chemists in quickly designing and predicting new potent and selective candidates as MAO-B inhibitors for MAO-B-driven diseases. This approach can also be used to identify MAO-B inhibitors from other libraries or screen top molecules for other targets involved in suitable diseases.
Collapse
Affiliation(s)
- Liliana Pacureanu
- "Coriolan Dragulescu" Institute of Chemistry, 24 Mihai Viteazu Ave., 300223 Timisoara, Romania
| | - Alina Bora
- "Coriolan Dragulescu" Institute of Chemistry, 24 Mihai Viteazu Ave., 300223 Timisoara, Romania
| | - Luminita Crisan
- "Coriolan Dragulescu" Institute of Chemistry, 24 Mihai Viteazu Ave., 300223 Timisoara, Romania
| |
Collapse
|
3
|
Asati V, Bharti SK, Das R, Kashaw V, Kashaw SK. Discovery of novel ALK2 inhibitors of pyrazolo-pyrimidines: A computational study. J Biomol Struct Dyn 2022; 40:10422-10436. [PMID: 34225569 DOI: 10.1080/07391102.2021.1944320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ALK2 is a serine/threonine kinase, involved in different signaling pathways and associated with cell proliferation and differentiation. The present study includes development of pharmacophore, 3-D QSAR, docking and virtual screening studies on 30 different pyrazolo[1,5-a]pyrimidine derivatives. The pharmacophore study provides ARRR_2 hypothesis with four different features essential for ALK2 kinase inhibitory activity. The 3 D-QSAR study determined the statistically significant model by using partial least-square regression (PLS) method with R2 value of 0.9711 and Q2 value of 0.6846. Validation of 3 D-QSAR has been performed by LOO cross-validation method where with R2CV value of 0.56. The virtual screening study on ZINC database provides compounds such as ZINC66091638, ZINC43524105, ZINC19458227 and ZINC72441013 involved good binding interactions (docking scores -8.91, -7.40, -8.43, and -9.47, respectively) with ALK2 kinase (PDB ID: 3Q4U). The docking study of pyrazolo-pyrimidines derivatives found potent compounds, 7i, 13r, 13d, and 21 with docking scores -9.83, -9.75, -9.76, and -9.75, respectively. The important interactions with amino acid residues were HID 286, ASN341. ADME properties further assist to provide important structural features of ALK2 kinase. The present study may be help to medicinal scientists in the direction to develop potent inhibitors against ALK2 kinase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sanjay K Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ratnesh Das
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar, Madhya Pradesh, India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar, Madhya Pradesh, India
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madhya Pradesh, India
| |
Collapse
|
4
|
Hawash M, Qaoud MT, Jaradat N, Abdallah S, Issa S, Adnan N, Hoshya M, Sobuh S, Hawash Z. Anticancer Activity of Thiophene Carboxamide Derivatives as CA-4 Biomimetics: Synthesis, Biological Potency, 3D Spheroid Model, and Molecular Dynamics Simulation. Biomimetics (Basel) 2022; 7:247. [PMID: 36546947 PMCID: PMC9775471 DOI: 10.3390/biomimetics7040247] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to synthesize thiophene carboxamide derivatives, which are considered biomimetics of the anticancer medication Combretastatin A-4 (CA-4), and compare the similarity in the polar surface area (PSA) between the novel series and CA-4. Our results showed that the PSA of the most synthesized structures was biomimetic to CA-4, and similar chemical and biological properties were observed against Hep3B cancer cell line. Among the synthesized series 2b and 2e compounds were the most active molecules on Hep3B (IC50 = 5.46 and 12.58 µM, respectively). The 3D results revealed that both 2b and 2e structures confuse the surface of Hep3B cancer cell lines' spheroid formation and force these cells to aggregate into a globular-shaped spheroid. The 2b and 2e showed a comparable interaction pattern to that observed for CA-4 and colchicine within the tubulin-colchicine-binding pocket. The thiophene ring, due to holding a high aromaticity character, participated critically in that observed interaction profile and showed additional advanced interactions over CA-4. The 2b and 2e tubulin complexes showed optimal dynamics trajectories within a time scale of 100 ns at 300 K temperature, which asserts their high stability and compactness. Together, these findings revealed the biomimetic role of 2b and 2e compounds in CA-4 in preventing cancer progression.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Mohammed T. Qaoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Samer Abdallah
- Department of Biology & Biotechnology, Faculty of Science, An-Najah National University, Nablus 00970, Palestine
| | - Shahd Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Nawal Adnan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Marah Hoshya
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Shorooq Sobuh
- Department of Biomedical Sciences, Physiology, Pharmacology & Toxicology Division, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Zafer Hawash
- Department of Physics, Faculty of Science, Birzeit University, Birzeit, Ramallah 71939, Palestine
| |
Collapse
|
5
|
Natural Compounds as DPP-4 Inhibitors: 3D-Similarity Search, ADME Toxicity, and Molecular Docking Approaches. Symmetry (Basel) 2022. [DOI: 10.3390/sym14091842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes mellitus is one of the most common diseases of the 21st century, caused by a sedentary lifestyle, poor diet, high blood pressure, family history, and obesity. To date, there are no known complete cures for type 2 diabetes. To identify bioactive natural products (NPs) to manage type 2 diabetes, the NPs from the ZINC15 database (ZINC-NPs DB) were screened using a 3D shape similarity search, molecular docking approaches, and ADMETox approaches. Frequently, in silico studies result in asymmetric structures as “hit” molecules. Therefore, the asymmetrical FDA-approved diabetes drugs linagliptin (8-[(3R)-3-aminopiperidin-1-yl]-7-but-2-ynyl-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]purine-2,6-dione), sitagliptin ((3R)-3-amino-1-[3-(trifluoromethyl)-6,8-dihydro-5H-[1,2,4]triazolo[4,3-a]pyrazin-7-yl]-4-(2,4,5-trifluorophenyl)butan-1-one), and alogliptin (2-[[6-[(3R)-3-aminopiperidin-1-yl]-3-methyl-2,4-dioxopyrimidin-1-yl]methyl]benzonitrile) were used as queries to virtually screen the ZINC-NPs DB and detect novel potential dipeptidyl peptidase-4 (DPP-4) inhibitors. The most promising NPs, characterized by the best sets of similarity and ADMETox features, were used during the molecular docking stage. The results highlight that 11 asymmetrical NPs out of 224,205 NPs are potential DPP-4 candidates from natural sources and deserve consideration for further in vitro/in vivo tests.
Collapse
|
6
|
Crisan L, Funar-Timofei S, Borota A. Homology Modeling and Molecular Docking Approaches for the Proposal of Novel Insecticides against the African Malaria Mosquito ( Anopheles gambiae). Molecules 2022; 27:3846. [PMID: 35744972 PMCID: PMC9227062 DOI: 10.3390/molecules27123846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Vector-borne infectious diseases are responsible for the deaths of over 700,000 people annually, than 400,000 of them resulting from malaria. The mosquito Anopheles gambiae is one of the dominant vector species of human malaria transmission. A significant issue of the conventional insecticides which target the arthropod borne infectious diseases is their induced resistance. To overcome this inconvenience, insecticides with new modes of action are required. One of the most promising targets for the development of new potential insecticides as evidenced by current studies is the D1-like dopamine receptor (DAR). To get a deeper understanding of the structural information of this receptor, the 3D homology model was built. The possible sites within the protein were identified and the most probable binding site was highlighted. The homology model along with a series of DAR antagonists with known activity against Anopheles gambiae larvae were used in docking experiments to gain insight into their intermolecular interactions. Furthermore, virtual screening of the natural compounds from the SPECS database led to the prediction of toxicity and environmental hazards for one potential new insecticide against the Anopheles gambiae mosquito.
Collapse
Affiliation(s)
| | | | - Ana Borota
- “Coriolan Dragulescu” Institute of Chemistry, 24 M. Viteazu Ave, 300223 Timisoara, Romania; (L.C.); (S.F.-T.)
| |
Collapse
|
7
|
Ali A. Development of antidiabetic drugs from benzamide derivatives as glucokinase activator: A computational approach. Saudi J Biol Sci 2022; 29:3313-3325. [PMID: 35844378 PMCID: PMC9280248 DOI: 10.1016/j.sjbs.2022.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/24/2022] Open
Abstract
Hyperglycemia is a condition known for the impairment of insulin secretion and is responsible for diabetes mellitus. Various small molecule inhibitors have been discovered as glucokinase activators. Recent studies on benzamide derivatives showed their importance in the treatment of diabetes as glucokinase activator. The present manuscript showed a computation study on benzamide derivatives to help in the production of potent glucokinase activators. In the present study, pharmacophore development, 3D-QSAR, and docking studies were performed on benzamide derivatives to find out the important features required for the development of a potential glucokinase activator. The generated pharmacophore hypothesis ADRR_1 consisted of essential features required for the activity. The resultant statistical data showed high significant values with R2 > 0.99; 0.98 for the training set and Q2 > 0.52; 0.71 for test set based on atom-based and field-based models, respectively. The potent compound 15b of the series showed a good docking score via binding with different amino acid residues such as (NH…ARG63), (SO2…ARG250, THR65), and π-π staking with (phenyl……TYR214). The virtual screening study used 3563 compounds from ZINC database and screened hit compound ZINC08974524, binds with similar amino acids as shown by compound 15b and crystal ligand with docking scores SP (-11.17 kcal/mol) and XP (-8.43 kcal/mol). Compounds were further evaluated by ADME and MMGBSA parameters. Ligands and ZINC hits showed no violation of Lipinski rules. All the screened compounds showed good synthetic accessibility. The present study may be used by researchers for the development of novel benzamide derivatives as glucokinase activator.
Collapse
|
8
|
Ali A, Abdellattif MH, Ali A, AbuAli O, Shahbaaz M, Ahsan MJ, Hussien MA. Computational Approaches for the Design of Novel Anticancer Compounds Based on Pyrazolo[3,4-d]pyrimidine Derivatives as TRAP1 Inhibitor. Molecules 2021; 26:molecules26195932. [PMID: 34641473 PMCID: PMC8512242 DOI: 10.3390/molecules26195932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
In the present in-silico study, various computational techniques were applied to determine potent compounds against TRAP1 kinase. The pharmacophore hypothesis DHHRR_1 consists of important features required for activity. The 3D QSAR study showed a statistically significant model with R2 = 0.96 and Q2 = 0.57. Leave one out (LOO) cross-validation (R2 CV = 0.58) was used to validate the QSAR model. The molecular docking study showed maximum XP docking scores (−11.265, −10.532, −10.422, −10.827, −10.753 kcal/mol) for potent pyrazole analogs (42, 46, 49, 56, 43), respectively, with significant interactions with amino acid residues (ASP 594, CYS 532, PHE 583, SER 536) against TRAP1 kinase receptors (PDB ID: 5Y3N). Furthermore, the docking results were validated using the 100 ns MD simulations performed for the selected five docked complexes. The selected inhibitors showed relatively higher binding affinities than the TRAP1 inhibitor molecules present in the literature. The ZINC database was used for a virtual screening study that screened ZINC05297837, ZINC05434822, and ZINC72286418, which showed similar binding interactions to those shown by potent ligands. Absorption, distribution, metabolism, and excretion (ADME) analysis showed noticeable results. The results of the study may be helpful for the further development of potent TRAP1 inhibitors
Collapse
Affiliation(s)
- Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (A.A.); (M.H.A.)
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: (A.A.); (M.H.A.)
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ola AbuAli
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Institute, University of Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa;
- Laboratory of Computational Modelling of Drugs, South Ural State University, 76 Lenin Prospects, 454080 Chelyabinsk, Russia
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Ambabari Circle, Jaipur 302039, India;
| | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42521, Egypt
| |
Collapse
|
9
|
Integrated computational approaches on pyrazoline derivatives as B-Raf kinase inhibitors for the development of novel anticancer agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Integrated computational approach on sodium-glucose co-transporter 2 (SGLT2) Inhibitors for the development of novel antidiabetic agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Arora M, Choudhary S, Silakari O. In silico guided designing of 4-(1H-benzo[d]imidazol-2-yl)phenol-based mutual-prodrugs of NSAIDs: synthesis and biological evaluation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:761-784. [PMID: 32867537 DOI: 10.1080/1062936x.2020.1810117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The free COOH group of conventional NSAIDs is a structural feature for non-selective cyclooxygenase (COX) inhibition and the molecular cause of their gastrointestinal (GI) toxicity. In this context, an in house database of synthesizable ester prodrugs of some well-known NSAIDs was developed by combining their -COOH group with -OH of a newly identified antioxidant 4-(1H-benzo[d]imidazol-2-yl)phenol (BZ). The antioxidant potential of BZ was unveiled through in silico PASS prediction and in vitro/in vivo evaluation. The in house database of NSAIDs-BZ prodrugs was first subjected to screening with our previously reported pharmacophore models of hCES1 (AAHRR.430) and hCES2 (AHHR.21) for determining hydrolytic susceptibility. Biotransformation behaviour of screened prodrugs was then assessed by using QM/MM and sterimol parameterization, followed by ADMET calculations to predict the drug likeness. On the basis of in silico results, five prodrugs were duly synthesized and the best three were subject to the in vivo evaluation for their anti-inflammatory, analgesic, antioxidant activities, and ulcerogenic index. Among these prodrugs, BN2 and BN5 displayed better anti-inflammatory and analgesics potential in comparison to their parent drugs. All the prodrugs were found to be gastro sparing in the rat model and significantly improved the levels of oxidative stress biomarkers in both blood plasma as well as gastric homogenate.
Collapse
Affiliation(s)
- M Arora
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University , Patiala, India
| | - S Choudhary
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University , Patiala, India
| | - O Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University , Patiala, India
| |
Collapse
|
12
|
Asati V, Agarwal S, Mishra M, Das R, Kashaw SK. Structural prediction of novel pyrazolo-pyrimidine derivatives against PIM-1 kinase: In-silico drug design studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Appell M, Tu YS, Compton DL, Evans KO, Wang LC. Quantitative structure-activity relationship study for prediction of antifungal properties of phenolic compounds. Struct Chem 2020. [DOI: 10.1007/s11224-020-01549-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|