1
|
Halfar R, Damborský J, Marques SM, Martinovič J. Moldina: a fast and accurate search algorithm for simultaneous docking of multiple ligands. J Cheminform 2025; 17:61. [PMID: 40296174 PMCID: PMC12039276 DOI: 10.1186/s13321-025-01005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
Protein-ligand docking is a computational method routinely used in many structural biology applications. It usually involves one receptor and one ligand. The docking of multiple ligands, however, can be important in several situations, such as the study of synergistic effects, substrate and product inhibition, or competitive binding. This can be a challenging and computationally demanding process. By integrating Particle Swarm Optimization into the established AutoDock Vina framework, we provided a powerful tool capable of accelerating drug discovery, and computational enzymology. Here we present Moldina (Multiple-Ligand Molecular Docking over AutoDock Vina), a new algorithm built upon AutoDock Vina. Through comprehensive testing against AutoDock Vina, the algorithm exhibited comparable accuracy in predicting ligand binding conformations while significantly reducing the computational time up to several hundred times. Moldina and the benchmark data are freely available at https://opencode.it4i.eu/permed/moldina-multiple-ligand-molecular-docking-over-autodock-vina and https://github.com/It4innovations/moldina-multiple-ligand-molecular-docking-over-autodock-vina .
Collapse
Affiliation(s)
- Radek Halfar
- IT4Innovations, VSB - Technical University of Ostrava, 70800, Ostrava, Czech Republic.
| | - Jiří Damborský
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital, 656 91, Brno, Czech Republic
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
- International Clinical Research Centre, St. Anne's University Hospital, 656 91, Brno, Czech Republic.
| | - Jan Martinovič
- IT4Innovations, VSB - Technical University of Ostrava, 70800, Ostrava, Czech Republic.
| |
Collapse
|
2
|
Aman LO, Ischak NI, Tuloli TS, Arfan A, Asnawi A. Multiple ligands simultaneous molecular docking and dynamics approach to study the synergetic inhibitory of curcumin analogs on ErbB4 tyrosine phosphorylation. Res Pharm Sci 2024; 19:754-765. [PMID: 39911900 PMCID: PMC11792710 DOI: 10.4103/rps.rps_191_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Accepted: 11/23/2024] [Indexed: 02/07/2025] Open
Abstract
Background and purpose Lapatinib (FMM) and 5-fluorouracil (5-FU) are anticancer drugs employed in a combination approach. FMM inhibits tyrosine phosphorylation of ErbB4 while 5-FU inhibits cell proliferation. This research aimed to investigate the potential of two compounds, namely (1E,4E)-1,5-bis (4-hydroxyphenyl) penta-1,4-dien-3-one (AC01) and (1E,4E)-1,5-bis (3,4-dihydroxy phenyl) penta-1,4-dien-3-one (AC02), both as individual inhibitors and combination partners with FMM, targeting ErbB4 inhibition. AC01 and AC02 were combined with FMM, which targets ErbB4. The combination of 5-FU with FMM served as a reference in this study. Experimental approach The research utilized computational simulation methods such as single and multiple ligands simultaneously docking and dynamics. Data analysis was performed using AutoDockTools and gmx_MMPBSA. Findings/Results Single docking results indicated that 5-FU exhibited the lowest binding affinity, while FMM demonstrated the highest. Simultaneous docking of AC01 and AC02 paired with FMM revealed their binding positions overlapping with the FMM-5-FU workspace. The FMM-AC01 and FMM-AC02 complexes exhibited slightly weaker binding affinities compared to FMM-5-FU. In combination with FMM, AC01 and AC02 occupied the ErbB4 activation loop, whereas 5-FU was outside the activation loop. Furthermore, in their interaction with ErbB4, AC02 exhibited slightly stronger binding than AC01, as confirmed by the average binding free energy calculations from molecular dynamics simulations. Conclusion and implications In conclusion, computational simulations indicated that both AC01 and AC02 have the potential to act as anticancer candidates, demonstrating ErbB4 inhibitory potential both as individual agents and in synergy with FMM.
Collapse
Affiliation(s)
- La Ode Aman
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Gorontalo, Indonesia
| | - Netty Ino Ischak
- Department of Chemistry, Faculty of Matematics and Natural Sciences, Universitas Negeri Gorontalo, Gorontalo, Indonesia
| | - Teti Sutriyati Tuloli
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Gorontalo, Indonesia
| | - Arfan Arfan
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari, Indonesia
| | - Aiyi Asnawi
- Faculty of Pharmacy, Universitas Bhakti Kencana, Bandung, Indonesia
| |
Collapse
|
3
|
Wiraswati HL, Bashari MH, Alfarafisa NM, Ma’ruf IF, Sholikhah EN, Wahyuningsih TD, Satriyo PB, Mustofa M, Satria D, Damayanti E. Pyrazoline B-Paclitaxel or Doxorubicin Combination Drugs Show Synergistic Activity Against Cancer Cells: In silico Study. Adv Appl Bioinform Chem 2024; 17:33-46. [PMID: 38435441 PMCID: PMC10908341 DOI: 10.2147/aabc.s452281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/10/2024] [Indexed: 03/05/2024] Open
Abstract
Background Multidrug resistance in various cancer types is a major obstacle in cancer treatment. The concept of a single drug molecular target often causes treatment failure due to the complexity of the cellular processes. Therefore, combination chemotherapy, in which two or more anticancer drugs are co-administered, can overcome this problem because it potentially have synergistic efficacy besides reducing resistance, and drug doses. Previously, we reported that pyrazoline B had promising anticancer activity in both in silico and in vitro studies. To increase the efficacy of this drug, co-administration with established anticancer drugs such as doxorubicin and paclitaxel is necessary. Materials and Methods In this study, we used an in silico approach to predict the synergistic effect of pyrazoline B with paclitaxel or doxorubicin using various computational frameworks and compared the results with those of an established study on the combination of doxorubicin-cyclophosphamide and paclitaxel-ascorbic acid. Results and Discussion Drug interaction analysis showed the combination was safe with no contraindications or side effects. Furthermore, molecular docking studies revealed that doxorubicin-pyrazoline B and doxorubicin-cyclophosphamide may synergistically inhibit cancer cell proliferation by inhibiting the binding of topoisomerase I to the DNA chain. Moreover, the combination of pyrazoline B-paclitaxel may has synergistic activity to cause apoptosis by inhibiting Bcl2 binding to the Bax fragment or inhibiting cell division by inhibiting α-β tubulin disintegration. Paclitaxel-ascorbic acid had a synergistic effect on the inhibition of α-β tubulin disintegration. Conclusion The results show that this combination is promising for further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Hesti Lina Wiraswati
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Oncology and Stem Cells Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Oncology and Stem Cells Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Nayla Majeda Alfarafisa
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Oncology and Stem Cells Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ilma Fauziah Ma’ruf
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Bogor, Indonesia
| | - Eti Nurwening Sholikhah
- Department of Pharmacology and Therapy, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tutik Dwi Wahyuningsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Pamungkas Bagus Satriyo
- Department of Pharmacology and Therapy, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Denny Satria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Ema Damayanti
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Gunungkidul, Indonesia
| |
Collapse
|
4
|
Alexova R, Alexandrova S, Dragomanova S, Kalfin R, Solak A, Mehan S, Petralia MC, Fagone P, Mangano K, Nicoletti F, Tancheva L. Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L. Molecules 2023; 28:molecules28093772. [PMID: 37175181 PMCID: PMC10180134 DOI: 10.3390/molecules28093772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a rich source of polyphenols, including ellagitannins and ellagic acid. The plant is used in traditional medicine, and its purified components can provide anti-inflammatory and antioxidant activity and support of host defenses during viral infection and recovery from disease. Current data show that pomegranate polyphenol extract and its ellagitannin components and metabolites exert their beneficial effects by controlling immune cell infiltration, regulating the cytokine secretion and reactive oxygen and nitrogen species production, and by modulating the activity of the NFκB pathway. In vitro, pomegranate extracts and ellagitannins interact with and inhibit the infectivity of a range of viruses, including SARS-CoV-2. In silico docking studies show that ellagitannins bind to several SARS-CoV-2 and human proteins, including a number of proteases. This warrants further exploration of polyphenol-viral and polyphenol-host interactions in in vitro and in vivo studies. Pomegranate extracts, ellagitannins and ellagic acid are promising agents to target the SARS-CoV-2 virus and to restrict the host inflammatory response to viral infections, as well as to supplement the depleted host antioxidant levels during the stage of recovery from COVID-19.
Collapse
Affiliation(s)
- Ralitza Alexova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Simona Alexandrova
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 23, 1113 Sofia, Bulgaria
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, Marin Drinov Str. 55, 9002 Varna, Bulgaria
| | - Reni Kalfin
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University "Neofit Rilski", Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Ayten Solak
- Institute of Cryobiology and Food Technologies, Cherni Vrah Blvd. 5, 1407 Sofia, Bulgaria
| | - Sidharth Mehan
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, Moga 142001, India
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Lyubka Tancheva
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 23, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Singh R, Gupta V, Kumar A, Singh K. 2-Deoxy-D-Glucose: A Novel Pharmacological Agent for Killing Hypoxic Tumor Cells, Oxygen Dependence-Lowering in Covid-19, and Other Pharmacological Activities. Adv Pharmacol Pharm Sci 2023; 2023:9993386. [PMID: 36911357 PMCID: PMC9998157 DOI: 10.1155/2023/9993386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/02/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG) has shown promising pharmacological activities, including inhibition of cancerous cell growth and N-glycosylation. It has been used as a glycolysis inhibitor and as a potential energy restriction mimetic agent, inhibiting pathogen-associated molecular patterns. Radioisotope derivatives of 2-DG have applications as tracers. Recently, 2-DG has been used as an anti-COVID-19 drug to lower the need for supplemental oxygen. In the present review, various pharmaceutical properties of 2-DG are discussed.
Collapse
Affiliation(s)
- Raman Singh
- Division Chemistry & Toxicology, WTL-Clean and Renewable Energy Pvt. Ltd., New Delhi, India
| | - Vidushi Gupta
- Department of Chemistry, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Kuldeep Singh
- Department of Applied Chemistry, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| |
Collapse
|