1
|
Louvard C, Cutmore SC, Cribb TH. A new species of Bivesiculoides (Digenea: Bivesiculidae) infecting atherinid fishes of the Great Barrier Reef, Queensland, Australia. Parasitol Int 2025; 104:102974. [PMID: 39307345 DOI: 10.1016/j.parint.2024.102974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024]
Abstract
We describe a new species of Bivesiculidae, Bivesiculoides maiae n. sp., from Hypoatherina tropicalis (Whitley) (Atherinidae) collected from off Heron Island (southern Great Barrier Reef, Queensland, Australia). Bivesiculoides maiae n. sp. is morphologically consistent with Bivesiculoides Yamaguti, 1938 in the entirely pre-testicular position of its uterus, and the possession of caeca and vitelline fields that extend posteriorly to level with the anterior extremity of the testis. The new species is morphologically distinct from the six known Bivesiculoides species in body size and shape, and shape of the pharynx and testis. Bivesiculoides maiae n. sp. is genetically distinct from the only other sequenced Bivesiculoides species, Bivesiculoides fusiformis Cribb, Bray & Barker, 1994, with which it occurs sympatrically at Heron Island. A review of related species allows two systematic recombinations. In view of the pre-testicular position of its uterus, we recombine Bivesicula hepsetiae Manter, 1947 as Bivesiculoides hepsetiae (Manter, 1947) n. comb. In view of its obtriangular body shape, round pharynx, strongly elongated testis, and the position of its ovary opposite the testis, we recombine Bivesiculoides triangularis Machida & Kuramochi, 2000 as Treptodemoides triangularis (Machida & Kuramochi, 2000) n. comb. Host-specificity of species of Bivesiculoides and their geographic distributions are discussed.
Collapse
Affiliation(s)
- Clarisse Louvard
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, North-West, South Africa.
| | - Scott C Cutmore
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland 4101, Australia
| | - Thomas H Cribb
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland 4101, Australia; School of the Environment, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Martin SB, Keatley S, Wallace A, Vaughan-Higgins RJ, Ash A. A critically co-endangered feather louse Forficuloecus pezopori n. sp. (Phthiraptera: Philopteridae) detected through conservation intervention for the western ground parrot Pezoporus flaviventris (Psittaculidae). Int J Parasitol Parasites Wildl 2024; 24:100931. [PMID: 38655449 PMCID: PMC11035363 DOI: 10.1016/j.ijppaw.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Forficuloecus pezopori Martin, Keatley & Ash n. sp. from the western ground parrot Pezoporus flaviventris North, 1911 (Psittaculidae) is proposed based on combined evidence from morphology and COI mitochondrial DNA. Phylogenetically, the new species is closest to its two known congeners from Western Australia: F. josephi Price, Johnson & Palma, 2008 from Bourke's parrot Neopsephotus bourkii (Gould, 1841) and the scarlet-chested parrot Neophema splendida (Gould, 1841), and F. palmai Guimarães, 1985 from the Australian ringneck parrot Barnardius zonarius (Shaw, 1805). Morphologically it is distinguishable by abdominal chaetotaxy and characters of the male genitalia, and is most similar to F. josephi and F. greeni Guimarães, 1985; the latter has no representative sequence data. Forficuloecus pezopori is the eleventh species of its genus and the only metazoan parasite known from P. flaviventris, which is among Australia's most endangered vertebrates. The new louse is apparently restricted to P. flaviventris and is therefore co-endangered, facing at least the same likelihood of extinction as its host. We recommend ongoing translocation and field monitoring efforts for P. flaviventris include monitoring but not treatment for lice infestations in otherwise healthy individuals, and that the care management plan for captive P. flaviventris considers that F. pezopori is similarly imperilled.
Collapse
Affiliation(s)
- Storm Blas Martin
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Sarah Keatley
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Alisa Wallace
- Wildlife Hospital, Taronga Western Plains Zoo, Dubbo, New South Wales, Australia
| | - Rebecca J. Vaughan-Higgins
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, Murdoch University, Perth, Western Australia, Australia
- Veterinary Department, Perth Zoo, Perth, Western Australia, Australia
| | - Amanda Ash
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Yong RQY, Martin SB, Smit NJ. A new species of Siphoderina Manter, 1934 (Digenea: Cryptogonimidae) infecting the Dory Snapper Lutjanus fulviflamma (Teleostei: Lutjanidae) from the east coast of South Africa. Syst Parasitol 2023; 100:673-686. [PMID: 37845589 PMCID: PMC10613151 DOI: 10.1007/s11230-023-10116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
Parasitological assessment of marine fishes at Sodwana Bay in the iSimangaliso Marine Protected Area on the east coast of South Africa revealed a new species of cryptogonimid trematode infecting the pyloric caeca of the Dory Snapper, Lutjanus fulviflamma (Forsskål) (Lutjanidae). The new species is morphologically consistent with the concept of the large genus Siphoderina Manter, 1934; its phylogenetic position within this genus was validated through molecular sequencing of the ITS2 and partial 28S ribosomal DNA sub-regions. We name this species Siphoderina nana n. sp. and comment on the current state of understanding for this genus of cryptogonimids.
Collapse
Affiliation(s)
- Russell Q-Y Yong
- Water Research Group, Unit for Environmental Sciences & Management, North-West University, Potchefstroom, 2520, South Africa.
| | - Storm B Martin
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences & Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
4
|
Cutmore SC, Corner RD, Cribb TH. Morphological constraint obscures richness: a mitochondrial exploration of cryptic richness in Transversotrema (Trematoda: Transversotrematidae). Int J Parasitol 2023; 53:595-635. [PMID: 37488048 DOI: 10.1016/j.ijpara.2023.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Species of Transversotrema Witenberg, 1944 (Transversotrematidae) occupy a unique ecological niche for the Trematoda, living externally under the scales of their teleost hosts. Previous studies of the genus have been impeded partly by limited variation in ribosomal DNA sequence data between closely related species and partly by a lack of morphometrically informative characters. Here, we assess richness of the tropical Indo-west Pacific species through parallel phylogenetic and morphometric analyses, generating cytochrome c oxidase subunit 1 mitochondrial sequence data and morphometric data for hologenophore specimens from Australia, French Polynesia, Japan and Palau. These analyses demonstrate that molecular data provide the only reliable basis for species identification; host distribution, and to a lesser extent morphology, are useful for identifying just a few species of Transversotrema. We infer that a combination of morphological simplicity and infection site constraint has led to the group displaying exceptionally low morphological diversification. Phylogenetic analyses of the mitochondrial data broadly support previous systematic interpretations based on ribosomal data, but also demonstrate the presence of several morphologically and ecologically cryptic species. Ten new species are described, eight from the Great Barrier Reef, Australia (Transversotrema chrysallis n. sp., Transversotrema daphnidis n. sp., Transversotrema enceladi n. sp., Transversotrema hyperionis n. sp., Transversotrema iapeti n. sp., Transversotrema rheae n. sp., Transversotrema tethyos n. sp., and Transversotrema titanis n. sp.) and two from off Japan (Transversotrema methones n. sp. and Transversotrema panos n. sp.). There are now 26 Transversotrema species known from Australian marine fishes, making it the richest trematode genus for the fauna.
Collapse
Affiliation(s)
- Scott C Cutmore
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland 4101, Australia.
| | - Richard D Corner
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia
| | - Thomas H Cribb
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia
| |
Collapse
|
5
|
Bray RA, Cutmore SC, Cribb TH. Proposal of a new genus, Doorochen (Digenea: Lepocreadioidea), for reef-inhabiting members of the genus Postlepidapedon Zdzitowiecki, 1993. Parasitol Int 2023; 93:102710. [PMID: 36423873 DOI: 10.1016/j.parint.2022.102710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
A new genus, Doorochen n. gen., is erected for four species of Postlepidapedon Zdzitowiecki, 1993, all of which inhabit members of the labroid genus Choerodon Bleeker, the tuskfishes, and which molecular phylogenies have indicated are not congeneric with the type-species, P. opisthobifurcatum (Zdzitowiecki, 1990) Zdzitowiecki, 1993. Doorochen secundum (Durio & Manter, 1968) n. comb. from Choerodon graphicus (De Vis), the Graphic tuskfish, from the Great Barrier Reef (GBR) and New Caledonia is designated the type-species of the new genus. Other species recognised are Doorochen spissum (Bray, Cribb & Barker, 1997) n. comb. from C. venustus (De Vis), the Venus tuskfish, C. cyanodus (Richardson), the Blue tuskfish, and C. graphicus from the GBR; D. uberis (Bray, Cribb & Barker, 1997) n. comb. from C. schoenleinii (Valenciennes), the Blackspot tuskfish, and C. venustus from the GBR and Moreton Bay; and D. philippinense (Machida, 2004) n. comb. from C. anchorago (Bloch), the Orange-dotted tuskfish, from Philippine waters. In addition to these four species, two new species are described: D. zdzitowieckii n. sp. from C. fasciatus (Günther), the Harlequin tuskfish, and C. graphicus from the GBR; and D. goorchana n. sp. from C. anchorago from the GBR and Palau. The genus Postlepidapedon is now considered to comprise just two species, P. opisthobifurcatum and P. quintum Bray & Cribb, 2001. The relationships of Doorochen, Postlepidapedon, Myzoxenus Manter, 1934 and Intusatrium Durio & Manter, 1968 in the family Lepidapedidae Yamaguti, 1958 are discussed.
Collapse
Affiliation(s)
- Rodney A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Scott C Cutmore
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland 4101, Australia
| | - Thomas H Cribb
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
6
|
Martin SB, Cutmore SC. Siphoderina hustoni n. sp. (Platyhelminthes: Trematoda: Cryptogonimidae) from the Maori snapper Lutjanus rivulatus (Cuvier) on the Great Barrier Reef. Syst Parasitol 2022; 99:403-417. [PMID: 35553302 PMCID: PMC9233634 DOI: 10.1007/s11230-022-10031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022]
Abstract
A new cryptogonimid trematode, Siphoderina hustoni n. sp., is reported, collected off Lizard Island, Queensland, Australia, from the Maori snapper Lutjanus rivulatus (Cuvier). The new species is moderately distinctive within the genus. It is larger and more elongate than most other species of Siphoderina Manter, 1934, has the shortest forebody of any, a relatively large ventral sucker, a long post-testicular zone, and is perhaps most recognisable for the substantial space in the midbody between the ventral sucker and ovary devoid of uterine coils and vitelline follicles, the former being restricted to largely posterior to the ovary and the latter distributed from the level of the anterior testis to the level of the ovary. In phylogenetic analyses of 28S ribosomal DNA, the new species resolved with the other nine species of Siphoderina for which sequence data are available, all of which are from Queensland waters and from lutjanid and haemulid fishes. Molecular barcode data were also generated, for the ITS2 ribosomal DNA and cox1 mitochondrial DNA markers. The new species is the first cryptogonimid known from L. rivulatus and the first metazoan parasite reported from that fish in Australian waters.
Collapse
Affiliation(s)
- Storm B Martin
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.
| | - Scott C Cutmore
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
7
|
HUSTON DANIELC, CUTMORE SCOTTC, CRIBB THOMASH. Enenterum kyphosi Yamaguti, 1970 and Enenterum petrae n. sp. (Digenea: Enenteridae) from kyphosid fishes (Centrarchiformes: Kyphosidae) collected in marine waters off eastern Australia. Zootaxa 2022; 5154:271-288. [DOI: 10.11646/zootaxa.5154.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/04/2022]
Abstract
Species of the digenean genus Enenterum Linton, 1910 (Lepocreadioidea: Enenteridae) are characterised primarily by their elaborate oral suckers, which are divided into varying numbers of anteriorly directed lobes, and their host-restriction to herbivorous marine fishes of the family Kyphosidae. We describe Enenterum petrae n. sp. from the brassy chub Kyphosus vaigiensis (Quoy & Gaimard) collected off Lizard Island, Great Barrier Reef, Queensland, Australia. Enenterum petrae n. sp. is readily differentiated from congeners by its unique oral sucker morphology, in having a minute pharynx, and the combination of a genital cap and accessory sucker. We also provide the first record of Enenterum kyphosi Yamaguti, 1970 from Australia based on material obtained from the blue sea chub Kyphosus cinerascens (Forsskål) collected off Lizard Island and North Stradbroke Island, Queensland. Morphologically, our specimens of E. kyphosi agree closely with descriptions of this species from Hawaii and South Africa, and despite lack of molecular data from outside of Australian waters, we consider all three reports to represent a single, widespread species. The first ITS2 and COI mtDNA gene sequences for species of Enenterum are provided and molecular phylogenetic analyses of 28S rDNA gene sequences place these species in a strongly-supported clade with the type-species of the genus, Enenterum aureum Linton, 1910. The oral suckers of both E. kyphosi and E. petrae n. sp. can be interpreted as having varying numbers of lobes depending on the particular specimen and how the division between lobes is defined. Scanning electron microscopical images improves understanding of the morphology of the enenterid oral sucker, and permits speculation regarding the evolutionary history leading to its specialisation in this lineage.
Collapse
|
8
|
Poulin R, McDougall C, Presswell B. What's in a name? Taxonomic and gender biases in the etymology of new species names. Proc Biol Sci 2022; 289:20212708. [PMID: 35538778 PMCID: PMC9091844 DOI: 10.1098/rspb.2021.2708] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
As our inventory of Earth's biodiversity progresses, the number of species given a Latin binomial name is also growing. While the coining of species names is bound by rules, the sources of inspiration used by taxonomists are an eclectic mix. We investigated naming trends for nearly 2900 new species of parasitic helminths described in the past two decades. Our analysis indicates that the likelihood of new species being given names that convey some information about them (name derived from morphology, host or locality of origin) or not (named after an eminent scientist, or for something else) depends on the higher taxonomic group to which the parasite or its host belongs. We also found a consistent gender bias among species named after eminent scientists, with male scientists being immortalized disproportionately more frequently than female scientists. Finally, we found that the tendency for taxonomists to name new species after a family member or close friend has increased over the past 20 years. We end by offering suggestions for future species naming, aimed at honouring the scientific community's diversity and avoiding etymological nepotism and cronyism, while still allowing for creativity in crafting new Latin species names.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
9
|
Cribb TH, Bray RA, Justine JL, Reimer J, Sasal P, Shirakashi S, Cutmore SC. A world of taxonomic pain: cryptic species, inexplicable host-specificity, and host-induced morphological variation among species of Bivesicula Yamaguti, 1934 (Trematoda: Bivesiculidae) from Indo-Pacific Holocentridae, Muraenidae and Serranidae. Parasitology 2022; 149:1-23. [PMID: 35357289 PMCID: PMC10090613 DOI: 10.1017/s0031182022000282] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/06/2022]
Abstract
The taxonomy of species of Bivesicula Yamaguti, 1934 is analysed for samples from holocentrid, muraenid and serranid fishes from Japan, Ningaloo Reef (Western Australia), the Great Barrier Reef (Queensland), New Caledonia and French Polynesia. Analysis of three genetic markers (cox1 mtDNA, ITS2 and 28S rDNA) identifies three strongly supported clades of species and suggests that Bivesicula as presently recognized is not monophyletic. On the basis of combined morphological, molecular and biological data, 10 species are distinguished of which five are proposed as new. Bivesicula Clade 1 comprises seven species of which three are effectively morphologically cryptic relative to each other; all seven infect serranids and four also infect holocentrids. Bivesicula Clade 2 comprises three species of which two are effectively morphologically cryptic relative to each other; all three infect serranids and one also infects a muraenid. Bivesicula Clade 3 comprises two known species from apogonids and a pomacentrid, and forms a clade with species of Paucivitellosus Coil, Reid & Kuntz, 1965 to the exclusion of other Bivesicula species. Taxonomy in this genus is made challenging by the combination of low resolving power of ribosomal markers, the existence of regional cox1 mtDNA populations, exceptional and unpredictable host-specificity and geographical distribution, and significant host-induced morphological variation.
Collapse
Affiliation(s)
- Thomas H. Cribb
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland4072, Australia
| | - Rodney A. Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, LondonSW7 5BD, UK
| | - Jean-Lou Justine
- ISYEB, Institut de Systématique Évolution Biodiversité, UMR7205 MNHN, CNRS, EPHE, UPMC, Université des Antilles, Muséum National d'Histoire Naturelle, 43 Rue Cuvier, 75005Paris, France
| | - James Reimer
- Molecular Invertebrate Systematics and Ecology, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa903-0213, Japan
| | - Pierre Sasal
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860Perpignan, France
| | - Sho Shirakashi
- Aquaculture Research Institute, Kindai University, Shirahama 3153, Wakayama649-2211, Japan
| | - Scott C. Cutmore
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland4072, Australia
| |
Collapse
|
10
|
Cribb TH, Cutmore SC, Bray RA. The biodiversity of marine trematodes: then, now and in the future. Int J Parasitol 2021; 51:1085-1097. [PMID: 34757087 DOI: 10.1016/j.ijpara.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/19/2022]
Abstract
Trematodes are the richest class of platyhelminths in the marine environment, infecting all classes of marine vertebrates as sexual adults and many phyla of marine invertebrates as part of their life cycles. Despite the cryptic nature of their existence (almost all marine trematodes are internal parasites), they have been the focus of study for almost 250 years, with the first species described in 1774. Here we review progress in the study of the "biodiversity" of these parasites, contrasting the progress made in the last 50 years (post-1971) to that in the almost 200 years before it (pre-1972). We consider an understanding of biodiversity to require knowledge of the species present in the system, an understanding of their evolutionary relationships (which informs higher classification), and, specifically for trematodes, an understanding of their complex life cycles. The fauna is now large, comprising well over 5,000 species. Although species description continues, we see evidence of a slow-down in all aspects of discovery. There has been only one completely new family identified since 1984 and the proposal of new genera is in decline as is the description of new species, especially for those of tetrapods. However, the extent to which this slow-down reflects an approach to the richness asymptote is made uncertain by changes in the field; reduced effort and difficulty of study may be important components of the effect. Regardless of how close we are to a complete description of the fauna, we infer that the outline is well-understood although the details are not. Adoption of molecular methodologies over the last 40 years have complemented morphometric analyses to facilitate objective recognition of species; however, despite these objective data, there is still inconsistency between authors on species delimitation. Molecular methodologies have also completely revolutionised inference of relationships at all levels, from within genera to between orders, and underpinned elucidation of novel life cycles. We expect the next 50 years to produce further dividends from technological innovations. The backdrop to the field will be global environmental concerns and the growing problem of funding for basic biodiversity studies.
Collapse
Affiliation(s)
- Thomas H Cribb
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia.
| | - Scott C Cutmore
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia
| | - Rodney A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
11
|
Bray RA, Cutmore SC, Cribb TH. A paradigm for the recognition of cryptic trematode species in tropical Indo-west Pacific fishes: the problematic genus Preptetos (Trematoda: Lepocreadiidae). Int J Parasitol 2021; 52:169-203. [PMID: 34656610 DOI: 10.1016/j.ijpara.2021.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022]
Abstract
Molecular data have transformed approaches to trematode taxonomy by providing objective evidence for the delineation of species. However, although the data are objective, the interpretation of these data regarding species boundaries is subjective, especially when different markers conflict. Conserved markers can lead to an underestimation of richness and those used for finer species delineation have the capacity to inflate species recognition, perhaps unrealistically. Here we examine molecular and morphological evidence for species recognition in an especially confusing system, the lepocreadiid genus Preptetos Pritchard, 1960 in acanthuriform fishes of the tropical Indo-west Pacific. We consider species boundaries within this genus based on combined data (ITS2 and 28S rDNA; cox1 mtDNA and morphometrics) for substantial new collections. Delineation of species using only morphological data suggest fewer species than analysis of the sequence data; the latter suggests the presence of potential cryptic species and analysis of different markers suggests the presence of differing numbers of species. We conclude that an integrative interpretation creates the most satisfying taxonomic hypothesis. In the light of the new data, we have chosen and propose a model of trematode species recognition that demands reciprocal monophyly in the most discriminating available molecular marker plus distinction in morphology or host distribution. By invoking these criteria, we distinguish eight species in our new tropical Indo-west Pacific collections. Six of these are new (Preptetos allocaballeroi n. sp., Preptetos paracaballeroi n. sp., Preptetos pearsoni n. sp., Preptetos prudhoei n. sp., Preptetos quandamooka n. sp. and Preptetos zebravaranus n. sp.) and we continue to recognise Preptetos cannoni Barker, Bray & Cribb, 1993 and Preptetos laguncula Bray and Cribb, 1996. Notably; two of the new species, P. allocaballeroi n. sp. and P. paracaballeroi n. sp., are morphologically cryptic relative to each other. Our criteria lead us to recognise, as species, populations with unvarying morphology and similar host relationships but which may have a complex population structure over their range. In our view, this paradigm has the capacity to render tractable the interpretation of the species status of the huge trematode fauna of the tropical Indo-west Pacific.
Collapse
Affiliation(s)
- Rodney A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Scott C Cutmore
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia
| | - Thomas H Cribb
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia
| |
Collapse
|
12
|
Shamsi S. The occurrence of Anisakis spp. in Australian waters: past, present, and future trends. Parasitol Res 2021; 120:3007-3033. [PMID: 34341859 DOI: 10.1007/s00436-021-07243-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
As one of the world's megadiverse countries, Australian biodiversity is vital for global biodiversity. Nematodes belonging to the genus Anisakis (family Anisakidae) are an important part of this biodiversity due to their ability to be repeatedly transmitted among their intermediate hosts before reaching the top of the food pyramid. Therefore, they have a significant impact on the community structures of various ecosystems. In addition, globally, they are known to be of medical and veterinary significance. The aim of this article is to provide an update on the current knowledge about these important parasites in Australia. Since 1916, a total of 234 records of Anisakis spp. from various hosts and localities have been found in Australia. It is estimated that the occurrence of Anisakis spp. and their health impacts in at least 84, 98.5, and 95% of Australian marine mammals, fish, and water birds, respectively, have not been documented yet. The results of this study suggest Australia is perhaps home to the most diverse Anisakis fauna. Available information is dominated by reports of these parasites in fish hosts, many of them among edible fish. Given the popularity of seafood in Australia and the occurrence of infectious stages of Anisakis spp. in edible fish, all stakeholders should be made aware of the occurrence, prevalence, and survival of Anisakis spp. in seafood. Also, as more pet owners feed their pets with a variety of fish and seafood products, it is important for veterinarians to be aware of seafood transmitted Anisakis spp. in pet animals. This study also highlights several important knowledge gaps: (i) The detailed life cycle of Anisakis spp. in Australia is not known. Detecting their first intermediate hosts is important for better management of crustacean zooplankton populations in our waters. (ii) Research on Anisakis spp. in Australia has been restricted to limited taxonomical studies and should extend to other aspects of these important parasites. (iii) The capacity to identify parasite taxa to species is especially important for resolving biological diversity around Australia; however, opportunities to formally train in parasite taxonomy are rare and diminishing. There is a need to train researchers with taxonomy skills. (iv) Given the vast range of biodiversity in Australia and the broad host-specificity of Anisakis spp., particularly in the larval stages, the full range of their intermediate hosts remains unknown. (v) The health impacts of the infection of the intermediate/definitive hosts with Anisakis spp. are not fully understood. Thus, one of the important areas for future studies is investigating the pathogenicity of Anisakis spp. in affected animals. This is a crucial yet unknown factor for the conservation of some endangered species in Australia.
Collapse
Affiliation(s)
- Shokoofeh Shamsi
- School of Animal and Veterinary Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Estella, New South Wales, 2678, Australia.
| |
Collapse
|
13
|
Corner RD, Cribb TH, Cutmore SC. A new genus of Bucephalidae Poche, 1907 (Trematoda: Digenea) for three new species infecting the yellowtail pike, Sphyraena obtusata Cuvier (Sphyraenidae), from Moreton Bay, Queensland, Australia. Syst Parasitol 2020; 97:455-476. [PMID: 32794085 DOI: 10.1007/s11230-020-09931-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Three new species of the family Bucephalidae Poche, 1907 (Trematoda: Digenea) are described from the yellowtail pike, Sphyraena obtusata Cuvier (Sphyraenidae), from Moreton Bay, Queensland, Australia. The three species are morphologically consistent with the present broad concept of the genus Bucephalus Baer, 1827, but significant phylogenetic and ecological differences relative to the type-species of Bucephalus require the proposal of a new genus. Aenigmatrema n. g. is proposed for A. undecimtentaculatum n. sp. (type-species), A. inopinatum n. sp. and A. grandiovum n. sp. In addition, based on morphological, ecological and biogeographical similarities, we recombine two existing species of Bucephalus as Aenigmatrema kaku (Yamaguti, 1970) n. comb. and Aenigmatrema sphyraenae (Yamaguti, 1952) n. comb. Although the three species described in this study are extremely morphologically similar, they can be differentiated from each other, and from A. kaku and A. sphyraenae, morphometrically on the basis of egg size, tentacle number and a combination of the caecum and vitelline field lengths. Complete ITS2 rDNA, partial 28S rDNA and partial cox1 mtDNA sequence data were generated for the three new species, which formed a well-supported clade in all 28S phylogenetic analyses. An expanded phylogenetic tree for the subfamily Bucephalinae Poche, 1907 is presented, demonstrating unresolved issues with the morphology-based taxonomy of the subfamily. The three largest genera, Bucephalus, Rhipidocotyle Diesing, 1858 and Prosorhynchoides Dollfus, 1929 remain extensively polyphyletic, indicating the need for significant further systematic revision.
Collapse
Affiliation(s)
- Richard D Corner
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Thomas H Cribb
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Scott C Cutmore
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
14
|
Santos-Bustos NG, Violante-González J, Monks S, Rojas-Herrera AA, Flores-Rodríguez P, Rosas-Acevedo JL, Villalba-Vasquez PJ. Parasite communities of striped bonito Sarda orientalis (Pisces: Scombridae) on the Pacific coast of Mexico. NEW ZEALAND JOURNAL OF ZOOLOGY 2020. [DOI: 10.1080/03014223.2020.1792516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nataly G. Santos-Bustos
- Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Acapulco, México
| | - Juan Violante-González
- Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Acapulco, México
- Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Acapulco, México
| | - Scott Monks
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Agustín A. Rojas-Herrera
- Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Acapulco, México
- Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Acapulco, México
| | - Pedro Flores-Rodríguez
- Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Acapulco, México
- Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Acapulco, México
| | - José Luis Rosas-Acevedo
- Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Acapulco, México
| | | |
Collapse
|
15
|
Poulin R, Presswell B, Jorge F. The state of fish parasite discovery and taxonomy: a critical assessment and a look forward. Int J Parasitol 2020; 50:733-742. [PMID: 32151615 DOI: 10.1016/j.ijpara.2019.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023]
Abstract
Efforts to find and characterise new parasite species in fish hosts are crucial not just to complete our inventory of Earth's biodiversity, but also to monitor and mitigate disease threats in fisheries and aquaculture in the face of global climate change. Here, we review recent quantitative assessments of research efforts into fish parasite discovery and taxonomy. We address broad questions including: Are efforts aimed at finding new parasite species targeted at geographical hotspots of fish biodiversity, where there should be more parasite species to be found? Is the application of molecular tools to study parasite genetic diversity deployed strategically across regions of the world, or focused disproportionately on certain areas? How well coordinated is the search for new parasite species of fish among workers specialising on different higher helminth taxa? Are parasite discovery efforts in any geographical area consistent over time, or subject to idiosyncrasies due to the waxing and waning of highly prolific research careers? Is the quality of taxonomic descriptions of new species improving over time, with the incorporation of new tools to characterise species? Are taxonomic descriptions moving away from a focus on the adult stage only toward attempts to characterise the full life cycle of newly-discovered helminth species? By using empirical evidence to answer these questions, we assess the current state of research into fish parasite discovery and taxonomy. We also explore the far-reaching implications of recent research on parasite microbiomes for parasite taxonomy. We end with recommendations aimed at maximising the knowledge gained per fish sacrificed, and per dollar and time invested into research on fish parasite biodiversity.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | - Bronwen Presswell
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Fátima Jorge
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
16
|
An identity crisis in the Indo-Pacific: molecular exploration of the genus Koseiria (Digenea: Enenteridae). Int J Parasitol 2019; 49:945-961. [PMID: 31628939 DOI: 10.1016/j.ijpara.2019.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 11/23/2022]
Abstract
We explore the growing issue of cryptic speciation in the Digenea through study of museum material and newly collected specimens consistent with the enenterid genus Koseiria from five species of the Kyphosidae and Chaetodontoplus meredithi Kuiter (Pomacanthidae) collected in the Indo-Pacific. We use an integrated approach, employing traditional morphometrics, principal components analysis (PCA), and molecular data (ITS2 and 28S rDNA). Our results support recombination of Koseiria allanwilliamsi Bray & Cribb, 2002 as Proenenterum allanwilliamsi (Bray & Cribb, 2002) n. comb. and transfer of Koseiria huxleyi Bray & Cribb, 2001 to a new genus as Enenterageitus huxleyi (Bray & Cribb, 2002) n. comb. Molecular data indicate the presence of four further species consistent with Koseiria, one from Western Australia (sequence data only) and three from eastern Australia. All three eastern Australian species are morphologically consistent with Koseiria xishaensis Gu & Shen, 1983, but distinct from all other previously described species. Although K. xishaensis has been reported from Australia, we conclude that the similarity of the present forms to the original description of K. xishaensis means records of this species from Japan, Palau and Australia are unreliable. Because the eastern Australian forms cannot be reliably ascribed to K. xishaensis, we describe Koseiria argalea n. sp., Koseiria laiphopharophora n. sp., and Koseiria pyknophora n. sp., following application of PCAs and iterative refinement of species concepts and type series. These analyses did not allow convincing identification hypotheses for all specimens examined. In this genus, both morphological and molecular data, together with reliable host identifications, are essential for species recognition, and thus we refrain from attempting to name samples lacking molecular data. The issues presented by these taxa encapsulate those of trematodes in the region as a whole. Many records require dramatically improved supporting data, leading to substantial uncertainly in the identification of this fauna.
Collapse
|
17
|
Jorge F, Poulin R. Poor geographical match between the distributions of host diversity and parasite discovery effort. Proc Biol Sci 2019; 285:rspb.2018.0072. [PMID: 29848643 DOI: 10.1098/rspb.2018.0072] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/02/2018] [Indexed: 11/12/2022] Open
Abstract
Mapping global parasite diversity is crucial to identify geographical hotspots of emerging disease, and guide public health and conservation efforts. In principle, assuming a bottom-up coupling between the diversity of resources and consumers, the geographical distribution of parasite diversity should match that of host diversity. We test the expected spatial congruence between host and parasite diversity for helminth parasites of vertebrate hosts, across grid cells of a global map. Using high-resolution databases on host species distributions and newly compiled data on the geographical distribution of parasite species discovery, we found positive covariation between host species richness and the number of parasite species discovered, for all vertebrate groups, regardless of the analytical method used, spatial autocorrelation, and spatial resolution. However, all associations were very weak, indicating a poor match between host species richness and parasite species discovery. The research deficit in parasite discovery peaks in areas corresponding to hotspots of host diversity, where disproportionately fewer new parasites are discovered than expected based on local host richness. This spatially biased research effort prevents a full inventory of parasite biodiversity, and impedes predictions of where new diseases may emerge. The host taxon-specific maps we produced, however, can guide future efforts to uncover parasite biodiversity.
Collapse
Affiliation(s)
- Fátima Jorge
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
18
|
A new genus and species of the trematode family Gyliauchenidae Fukui, 1929 from an unexpected, but plausible, host, Kyphosus cornelii (Perciformes: Kyphosidae). Parasitology 2019; 146:937-946. [PMID: 30862321 DOI: 10.1017/s0031182019000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Enenteridae Yamaguti, 1958 and Gyliauchenidae Fukui, 1929 exhibit an interesting pattern of host partitioning in herbivorous fishes of the Indo-West Pacific. Enenterids are known almost exclusively from fishes of the family Kyphosidae, a group of herbivorous marine fishes common on tropical and temperate reefs. In contrast, gyliauchenids are found in most of the remaining lineages of marine herbivorous fishes, but until the present study, had never been known from kyphosids. Here we report on the first species of gyliauchenid known from a kyphosid. Endochortophagus protoporus gen. nov., sp. nov. was recovered from the Western buffalo bream, Kyphosus cornelii (Whitley, 1944), collected off Western Australia. Kyphosus cornelii also hosts an enenterid, Koseiria allanwilliamsi Bray & Cribb, 2002, and is thus the first fish known in which enenterids and gyliauchenids co-occur. Molecular phylogenetic analyses place the new species close to those of Affecauda Hall & Chambers, 1999 and Flagellotrema Ozaki, 1936, but there is sufficient morphological evidence, combined with the unusual host, to consider it distinct from these genera. We discuss factors which may have contributed to the host partitioning pattern observed between enenterids and gyliauchenids.
Collapse
|
19
|
Aporocotylids from batoid and elopomorph fishes from Moreton Bay, Queensland, Australia, including a new genus and species of blood fluke infecting the Giant shovelnose ray, Glaucostegus typus (Rhinopristiformes: Glaucostegidae). Parasitol Int 2018; 67:768-775. [DOI: 10.1016/j.parint.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
|
20
|
Bray RA, Cutmore SC, Cribb TH. Lepotrema Ozaki, 1932 (Lepocreadiidae: Digenea) from Indo-Pacific fishes, with the description of eight new species, characterised by morphometric and molecular features. Syst Parasitol 2018; 95:693-741. [PMID: 30324416 PMCID: PMC6223840 DOI: 10.1007/s11230-018-9821-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/02/2018] [Indexed: 11/24/2022]
Abstract
We review species of the genus Lepotrema Ozaki, 1932 from marine fishes in the Indo-West Pacific. Prior to the present study six species were recognised. Here we propose eight new species on the basis of combined morphological and molecular analysis: Lepotrema acanthochromidis n. sp. ex Acanthochromis polyacanthus from the Great Barrier Reef (GBR); Lepotrema hemitaurichthydis n. sp. ex Hemitaurichthys polylepis and H. thompsoni from Palau and French Polynesia; Lepotrema melichthydis n. sp. ex Melichthys vidua from Palau and the GBR; Lepotrema amansis n. sp. ex Amanses scopas from the GBR; Lepotrema cirripectis n. sp. ex Cirripectes filamentosus, C. chelomatus and C. stigmaticus from the GBR; Lepotrema justinei n. sp. ex Sufflamen fraenatum from New Caledonia; Lepotrema moretonense n. sp. ex Prionurus microlepidotus, P. maculatus and Selenotoca multifasciata from Moreton Bay; and Lepotrema amblyglyphidodonis n. sp. ex Amblyglyphidodon curacao and Amphipron akyndynos from the GBR. We also report new host records and provide novel molecular data for two known species: Lepotremaadlardi Bray, Cribb & Barker, 1993 and Lepotremamonile Bray & Cribb, 1998. Two new combinations are formed, Lepotrema cylindricum (Wang, 1989) n. comb. (for Preptetos cylindricus) and Lepotrema navodonis (Shen, 1986) n. comb. (for Lepocreadium navodoni). With the exception of a handful of ambiguous records, the evidence is compelling that the host-specificity of species in this genus is overwhelmingly oioxenous or stenoxenous. This renders the host distribution in three orders and ten families especially difficult to explain as many seemingly suitable hosts are not infected. Multi-loci molecular data (ITS2 rDNA, 28S rDNA and cox1 mtDNA) demonstrate that Lepotrema is a good generic concept, but limited variability in sequence data and differences in phylogenies produced for different gene regions make relationships within the genus difficult to define.
Collapse
Affiliation(s)
- Rodney A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Scott C Cutmore
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Thomas H Cribb
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
21
|
Cutmore SC, Nolan MJ, Cribb TH. Heterobucephalopsine and prosorhynchine trematodes (Digenea: Bucephalidae) from teleost fishes of Moreton Bay, Queensland, Australia, with the description of two new species. Syst Parasitol 2018; 95:783-806. [DOI: 10.1007/s11230-018-9820-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022]
|
22
|
Huston DC, Cutmore SC, Cribb TH. Molecular systematics of the digenean community parasitising the cerithiid gastropod Clypeomorus batillariaeformis Habe & Kusage on the Great Barrier Reef. Parasitol Int 2018; 67:722-735. [PMID: 30053543 DOI: 10.1016/j.parint.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/18/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022]
Abstract
A rich fauna of digenetic trematodes has been documented from the Great Barrier Reef (GBR), yet little is known of the complex life-cycles of these parasites which occur in this diverse marine ecosystem. At Heron Island, a small coral cay at the southern end of the GBR, the intertidal marine gastropod Clypeomorus batillariaeformis Habe & Kusage (Cerithiidae) is especially abundant. This gastropod serves as an intermediate host for 12 trematode species utilising both fish and avian definitive hosts. However, 11 of these species have been characterised solely with morphological data. Between 2015 and 2018 we collected 4870C. batillariaeformis from Heron Island to recollect these species with the goal of using molecular data to resolve their phylogenetic placement. We found eight of the 12 previously known species and two new forms, bringing the total number of digenean species known to parasitise C. batillariaeformis to 14. The families of this trematode community now include the Atractotrematidae Yamaguti, 1939, Bivesiculidae Yamaguti, 1934, Cyathocotylidae Mühling, 1898, Hemiuridae Looss, 1899, Heterophyidae Leiper, 1909, Himasthlidae Odhner, 1910, Microphallidae Ward, 1901, and Renicolidae Dollfus, 1939. Molecular data (ITS and 28S rDNA) were generated for all trematode species, and the phylogenetic position of each species was determined. The digenean community parasitising C. batillariaeformis includes several common species, as well as multiple species which are uncommon to rare. Although most of those trematodes in the community which exploit fishes as definitive hosts have remained common, the composition of those which utilise birds appears to have shifted over time.
Collapse
Affiliation(s)
- Daniel C Huston
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia.
| | - Scott C Cutmore
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Thomas H Cribb
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| |
Collapse
|
23
|
Abstract
We need reliable data on the spatial distribution of parasites in order to achieve an inventory of global parasite biodiversity and establish robust conservation initiatives based on regional disease risk. This requires an integrated and spatially consistent effort toward the discovery of new parasite species. Using a large and representative dataset on the geographical coordinates where 4943 helminth species were first discovered, we first test whether the geographical distribution of parasite species reports is spatially congruent across helminth higher taxa; i.e. whether areas, where many trematodes are found, are also areas where many nematodes or cestodes have been discovered. Second, we test whether the global geographical distribution of new helminth species reports has changed significantly over time, i.e. across the last few decades. After accounting for spatial autocorrelation in the data, we find no strong statistical support for either of the patterns we investigated. Overall, our results indicate that helminth species discoveries are both spatially incongruent among higher taxa of helminths, and inconsistent over time. These findings suggest that the global parasite discovery effort is inefficient, spatially biased and subject to idiosyncrasies. Coordinated biodiscovery programmes, involving research teams with expertise in multiple taxonomic groups, seem the best approach to remedy these issues.
Collapse
|
24
|
Yong RY, Cutmore S, Jones M, Gauthier A, Cribb T. A complex of the blood fluke genus Psettarium (Digenea: Aporocotylidae) infecting tetraodontiform fishes of east Queensland waters. Parasitol Int 2018; 67:321-340. [DOI: 10.1016/j.parint.2017.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/20/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
25
|
Huston DC, Cutmore SC, Cribb TH. Trigonocephalotrema (Digenea : Haplosplanchnidae), a new genus for trematodes parasitising fishes of two Indo-West Pacific acanthurid genera. INVERTEBR SYST 2018. [DOI: 10.1071/is17075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Great Barrier Reef is the largest coral reef ecosystem on the planet and supports a diverse community of marine fishes, as well as the organisms that parasitise them. Although the digenetic trematodes that parasitise fishes of the Great Barrier Reef have been studied for over a century, the species richness and diversity of many trematode lineages is yet to be explored. Trigonocephalotrema, gen. nov. is proposed to accommodate three new species, Trigonocephalotrema euclidi, sp. nov., T. hipparchi, sp. nov. and T. sohcahtoa, sp. nov., parasitic in fishes of Naso Lacepède and Zebrasoma Swainson (Acanthuridae) in the tropical Pacific. Species of Trigonocephalotrema are characterised with morphological and molecular data (18S rRNA, ITS2 and 28S rRNA). Species of Trigonocephalotrema are morphologically distinguished from all other haplosplanchnid lineages by having terminal, triangular, plate-like oral suckers. With the inclusion of the new molecular data, Bayesian inference and maximum likelihood analyses of the Haplosplanchnidae Poche, 1926 recovered identical tree topologies and demonstrated Trigonocephalotrema as a well-supported monophyletic group. Although species of Trigonocephalotrema are differentiated from all other haplosplanchnid lineages on the basis of morphology, species within the genus are morphologically cryptic; thus, accurate species identification will require inclusion of host and molecular data. Species of Trigonocephalotrema cannot be assigned to a recognised subfamily within the Haplosplanchnidae using either morphological or molecular data and would require the erection of a new subfamily to accommodate them. However, we find little value in the use of subfamilies within the Haplosplanchnidae, given that there are so few taxa in the family, and herein propose that their use be avoided.
Collapse
|
26
|
Martínez-Aquino A, Vidal-Martínez VM, Aguirre-Macedo ML. A molecular phylogenetic appraisal of the acanthostomines Acanthostomum and Timoniella and their position within Cryptogonimidae (Trematoda: Opisthorchioidea). PeerJ 2017; 5:e4158. [PMID: 29250471 PMCID: PMC5729820 DOI: 10.7717/peerj.4158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using partial 28S ribosomal DNA (Domains 1-2) and internal transcribed spacers (ITS1-5.8S-ITS2). Bayesian inference and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the monophyly of the genus Acanthostomum (A. cf. americanum and A. burminis) and paraphyly of the Acanthostominae. These phylogenetic relationships were consistent in analyses of 28S alone and concatenated 28S + ITS1 + 5.8S + ITS2 sequences analyses. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon, in contrast with previous classifications based on morphological data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also well supported. However, analyses using additional genera and species are necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, we present the evolutionary and ecological implications of parasitic infections in freshwater and brackish environments.
Collapse
Affiliation(s)
- Andrés Martínez-Aquino
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Victor M. Vidal-Martínez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - M. Leopoldina Aguirre-Macedo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| |
Collapse
|
27
|
Monorchis lewisi n. sp. (Trematoda: Monorchiidae) from the surf bream, Acanthopagrus australis (Sparidae), in Moreton Bay, Australia. J Helminthol 2017; 92:100-108. [DOI: 10.1017/s0022149x1700102x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractWe describe Monorchis lewisi n. sp. (Monorchiidae) from the surf bream, Acanthopagrus australis (Günther, 1859) (Sparidae), in Moreton Bay, eastern Australia. The new species differs from most existing species of Monorchis Monticelli, 1893 in its possession of an elongate I-shaped excretory vesicle, and from other congeners in the relative configuration of the gut and suckers. Ovipusillus mayu Dove & Cribb, 1998 is re-reported from Gnathanodon speciosus (Forsskål, 1775) (Carangidae) from Moreton Bay. We report new second internal transcribed spacer (ITS2) and 28S rDNA sequence data for both species. Bayesian inference and Maximum Likelihood analyses of the 28S rDNA dataset suggest that existing subfamily and genus concepts within the family require substantial revision.
Collapse
|
28
|
Isorchis cannoni n. sp. (Digenea: Atractotrematidae) from Great Barrier Reef rabbitfishes and the molecular elucidation of its life cycle. J Helminthol 2017; 92:604-611. [PMID: 29094659 DOI: 10.1017/s0022149x17000906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We describe Isorchis cannoni n. sp. from the rabbitfishes Siganus fuscescens (Houttuyn) and Siganus lineatus (Valenciennes) (Siganidae) collected off Heron Island, southern Great Barrier Reef, Australia and, using molecular data, demonstrate that 'Cercariae queenslandae II' of Cannon (1978) from the gastropod Clypeomorus batillariaeformis Habe & Kosuge (Cerithiidae) is the larval form of this new species. The cercariae of I. cannoni n. sp. develop in rediae, encyst in the environment after emergence, and are inferred to then be consumed by grazing rabbitfish. Additionally, we provide a new report of Isorchis currani Andres, Pulis & Overstreet, 2016 from the type host, Selenotoca multifasciata (Richardson) (Scatophagidae) collected in Moreton Bay, south-east Queensland, Australia, greatly expanding the known geographical range of this species. Molecular sequence data (ITS1, ITS2 and 28S rDNA) generated for I. cannoni n. sp. and the new specimens of I. currani, confirm the identification of I. currani and demonstrate a distinct genotype for I. cannoni n. sp. relative to other species of Isorchis Durio & Manter, 1969, for which molecular data are available. Isorchis cannoni n. sp. is morphologically distinct from all other species in the genus, and is further distinguished by utilizing species of Siganidae as definitive hosts, rather than species of Chanidae or Scatophagidae. Because haploporid and atractotrematid cercariae have well-developed reproductive organs, we find cercariae of these closely related families morphologically distinguishable in the same way as adult trematodes: atractotrematids have two symmetrical testes and haploporids have a single testis or, rarely, two tandem or oblique testes.
Collapse
|
29
|
Huston DC, Cutmore SC, Cribb TH. Molecular phylogeny of the Haplosplanchnata Olson, Cribb, Tkach, Bray and Littlewood, 2003, with a description of Schikhobalotrema huffmani n. sp. Acta Parasitol 2017; 62:502-512. [PMID: 28682775 DOI: 10.1515/ap-2017-0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/27/2017] [Indexed: 11/15/2022]
Abstract
We describe Schikhobalotrema huffmani n. sp. from Tylosurus crocodilus (Péron and Leseur) (Belonidae) collected off Lizard Island, Great Barrier Reef, Queensland, Australia and Tylosurus gavialoides (Castelnau) collected from Moreton Bay, Queensland. Schikhobalotrema huffmani n. sp., along with Schikhobalotrema ablennis (Abdul-Salam and Khalil, 1987) Madhavi, 2005, Schikhobalotrema acutum (Linton, 1910) Skrjabin and Guschanskaja, 1955 and Schikhobalotrema adacutum (Manter, 1937) Skrjabin and Guschanskaja, 1955 are distinguished from all other species of Schikhobalotrema Skrjabin and Guschanskaja, 1955 in having ventral suckers which bear lateral lobes and have longitudinal apertures. Schikhobalotrema huffmani n. sp. differs from S. ablennis in having an obvious post-vitelline region and a longer forebody. From S. acutum, S. huffmani n. sp. differs in having a prostatic bulb smaller than the pharynx and more anterior testis. From S. adacutum, S. huffmani n. sp. differs in having more prominent ventral sucker lobes, a conspicuous prostatic bulb and a longer forebody. We also report the first Australian record of Haplosplanchnus pachysomus (Eysenhardt, 1829) Looss, 1902, from Mugil cephalus Linnaeus (Mugilidae) collected in Moreton Bay. Molecular sequence data (ITS2, 18S and 28S rDNA) were generated for Schikhobalotrema huffmani n. sp., H. pachysomus and archived specimens of Hymenocotta mulli Manter, 1961. The new 18S and 28S molecular data were combined with published data of five other haplosplanchnid taxa to expand the phylogeny for the Haplosplanchnata. Bayesian inference and Maximum Likelihood analyses recovered identical tree topology and demonstrated the Haplosplanchnata as a well-supported monophyletic group. However, relationships at and below the subfamily level remain poorly resolved.
Collapse
|
30
|
Two new and one known species of Tergestia Stossich, 1899 (Trematoda: Fellodistomidae) with novel molecular characterisation for the genus. Syst Parasitol 2017; 94:861-874. [PMID: 28866753 DOI: 10.1007/s11230-017-9749-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/13/2017] [Indexed: 10/18/2022]
Abstract
Combined morphological and molecular analyses are employed to characterise three species of Tergestia Stossich, 1899 (Digenea: Fellodistomidae) from fishes of Moreton Bay, Queensland, Australia. Tergestia clonacantha Manter, 1963 is reported here for the first time from the halfbeak (Beloniformes: Hemiramphidae) species Arrhamphus sclerolepis krefftii (Steindachner), Hyporhamphus australis (Steindachner), H. quoyi (Valenciennes) and H. regularis ardelio (Whitley). Two new species, both infecting trevally (Perciformes: Carangidae) species, are described: T. maryae n. sp. from Alepes apercna Grant and T. henryi n. sp. from Pantolabus radiatus (MacLeay). Complete ITS2 and partial 28S ribosomal DNA data were generated for each of the new taxa. The three species differ from each other by 47-58 base pairs (bp) in the ITS2 rDNA region. Phylogenetic analysis of 28S rDNA supports Tergestia as a reliable generic concept, with our analyses showing that some species of the genus form a well-supported clade to the exclusion of all other fellodistomids for which sequence data are available.
Collapse
|
31
|
A re-evaluation of diversity of the Aporocotylidae Odhner, 1912 in Siganus fuscescens (Houttuyn) (Perciformes: Siganidae) and associated species. Syst Parasitol 2017; 94:717-737. [DOI: 10.1007/s11230-017-9744-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/23/2017] [Indexed: 10/19/2022]
|
32
|
Wee NQX, Cribb TH, Bray RA, Cutmore SC. Two known and one new species of Proctoeces from Australian teleosts: Variable host-specificity for closely related species identified through multi-locus molecular data. Parasitol Int 2017; 66:16-26. [DOI: 10.1016/j.parint.2016.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 11/30/2022]
|
33
|
Three members of Opisthomonorcheides Parukhin, 1966 (Digenea: Monorchiidae) from carangid fishes (Perciformes) from Indonesia, with a review of the genus. Syst Parasitol 2017; 94:443-462. [PMID: 28337682 PMCID: PMC5385322 DOI: 10.1007/s11230-017-9717-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/10/2017] [Indexed: 11/21/2022]
Abstract
Three species of Opisthomonorcheides Parukhin, 1966 are reported for the first time from Indonesian waters: O. pampi (Wang, 1982) Liu, Peng, Gao, Fu, Wu, Lu, Gao & Xiao, 2010 and O. ovacutus (Mamaev, 1970) Machida, 2011 from Parastromateus niger (Bloch), and O. decapteri Parukhin, 1966 from Atule mate (Cuvier). Both O. pampi and O. ovacutus can now be considered widespread in the Indo-Pacific region, with earlier records of these species being from Fujian Province, China and Penang, Malaysia, respectively. We redescribe O. decapteri from one of its original hosts, Atule mate, off New Caledonia, and report this species from Jakarta Bay, Indonesia, extending its range throughout the Indian Ocean into the south-western Pacific. All three species possess a genital atrium that is long, sometimes very long, and a genital pore that is located in the forebody. This validates the interpretation that the original description was erroneous in reporting the genital pore in the hindbody, well posterior to the ventral sucker. These observations verify the synonymy of Retractomonorchis Madhavi, 1977 with Opisthomonorcheides. A major discrepancy between the species of Opisthomonorcheides is that some are described with the uterus entering the terminal organ laterally and some with it entering terminally; this feature needs further analysis. Based on the length of the genital atrium and the posterior extent of the vitellarium, the 27 species of Opisthomonorcheides considered valid can be divided into four groups. Among the 53 host records analysed, the families Carangidae (53% of records), Stromateidae (17%) and Serranidae (5.7%) are the most common; the reports are overwhelmingly from members of the Perciformes (91%), with further records in the Clupeiformes (5.7%), Gadiformes (1.9%) and Pleuronectiformes (1.9%). Two fish genera (Parastromateus Bleeker and Pampus Bonaparte) dominate the recorded hosts, with the black pomfret Parastromateus niger harbouring six species, the silver pomfret Pampus argenteus (Euphrasen) harbouring six, and the Chinese silver pomfret P. chinensis (Euphrasen) two. A host-parasite checklist is presented. We discuss the host-specificity of members of the genus, questioning some records such as that of O. decapteri in a deep-sea macrourid. We also comment on the morphological similarity, but phylogenetic distance, between the various Pomfret species, advancing the possibility that a series of host misidentifications has occurred. Sequences of the ITS2 rDNA gene generated for O. pampi and O. ovacutus are briefly discussed and molecular data are lodged in the GenBank database.
Collapse
|
34
|
Reverter M, Cribb TH, Cutmore SC, Bray RA, Parravicini V, Sasal P. Did biogeographical processes shape the monogenean community of butterflyfishes in the tropical Indo-west Pacific region? Int J Parasitol 2017; 47:447-455. [PMID: 28322846 DOI: 10.1016/j.ijpara.2017.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 11/24/2022]
Abstract
Geographical distribution of parasite species can provide insights into the evolution and diversity of parasitic communities. Biogeography of marine parasites is poorly known, especially because it requires an understanding of host-parasite interactions, information that is rare, especially over large spatial scales. Here, we have studied the biogeographical patterns of dactylogyrid parasites of chaetodontids, one of the most well-studied fish families, in the tropical Indo-west Pacific region. Dactylogyrid parasites were collected from gills of 34 butterflyfish species (n=560) at nine localities within an approximate area of 62millionkm2. Thirteen dactylogyrid species were identified, with richness ranging from 6 to 12 species at individual localities. Most dactylogyrid communities were dominated by Haliotrema angelopterum or Haliotrema aurigae, for which relative abundance was negatively correlated (ρ=-0.59). Parasite richness and diversity were highest in French Polynesia and the Great Barrier Reef (Australia) and lowest in Palau. Three biogeographic regions were identified based on dactylogyrid dissimilarities: French Polynesia, characterised by the dominance of H. angelopterum, the western Pacific region dominated by H. aurigae, and Ningaloo Reef (Australia), dominated by Euryhaliotrema berenguelae. Structure of host assemblages was the main factor explaining the dissimilarity (turnover and nestedness components of the Bray-Curtis dissimilarity and overall Bray-Curtis dissimilarity) of parasite communities between localities, while environment was only significant in the turnover of parasite communities and overall dissimilarity. Spatial structure of localities explained only 10% of the turnover of parasite communities. The interaction of the three factors (host assemblages, environment and spatial structure), however, explained the highest amounts of variance of the dactylogyrid communities, indicating a strong colinearity between the factors. Our findings show that spatial arrangement of chaetodontid dactylogyrids in the tropical Indo-west Pacific is primarily characterised by the turnover of the main Haliotrema spp., which is mainly explained by the structure of host assemblages.
Collapse
Affiliation(s)
- M Reverter
- Centre des Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; Laboratoire d'Excellence "CORAIL", 98729 Moorea, French Polynesia.
| | - T H Cribb
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland 4072, Australia
| | - S C Cutmore
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland 4072, Australia
| | - R A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - V Parravicini
- Centre des Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; Laboratoire d'Excellence "CORAIL", 98729 Moorea, French Polynesia
| | - P Sasal
- Centre des Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; Laboratoire d'Excellence "CORAIL", 98729 Moorea, French Polynesia
| |
Collapse
|
35
|
Martin SB, Cutmore SC, Cribb TH. Revision of Neolebouria Gibson, 1976 (Digenea: Opecoelidae), with Trilobovarium n. g., for species infecting tropical and subtropical shallow-water fishes. Syst Parasitol 2017; 94:307-338. [DOI: 10.1007/s11230-017-9707-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/02/2017] [Indexed: 11/24/2022]
|
36
|
Abstract
AbstractMany helminth taxa have complex life cycles, involving different life stages infecting different host species in a particular order to complete a single generation. Although the broad outlines of these cycles are known for any higher taxon, the details (morphology and biology of juvenile stages, specific identity of intermediate hosts) are generally unknown for particular species. In this review, we first provide quantitative evidence that although new helminth species are described annually at an increasing rate, the parallel effort to elucidate life cycles has become disproportionately smaller over time. We then review the use of morphological matching, experimental infections and genetic matching as approaches to elucidate helminth life cycles. Next we discuss the various research areas or disciplines that could benefit from a solid knowledge of particular life cycles, including integrative taxonomy, the study of parasite evolution, food-web ecology, and the management and control of parasitic diseases. Finally, we end by proposing changes to the requirements for new species descriptions and further large-scale attempts to genetically match adult and juvenile helminth stages in regional faunas, as part of a plea to parasitologists to bring parasite life-cycle studies back into mainstream research.
Collapse
|
37
|
Kudlai O, Cribb TH, Cutmore SC. A new species of microphallid (Trematoda: Digenea) infecting a novel host family, the Muraenidae, on the northern Great Barrier Reef, Australia. Syst Parasitol 2016; 93:863-876. [DOI: 10.1007/s11230-016-9670-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/13/2016] [Indexed: 11/28/2022]
|
38
|
Andres MJ, Pulis EE, Overstreet RM. Description of three species of Isorchis (Digenea: Atractotrematidae) from Australia. Acta Parasitol 2016; 61:590-601. [PMID: 27447225 DOI: 10.1515/ap-2016-0079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/11/2016] [Indexed: 01/05/2023]
Abstract
Three species of Isorchis Durio and Manter, 1969 are described from Australian waters. Isorchis megas sp. nov. is described from the spotbanded scat, Selenotoca multifasciata (Richardson), off Western Australia (WA) and Northern Territory (NT); Isorchis currani sp. nov. is described from S. multifasciata off NT; and Isorchis anomalus sp. nov. is described from the milkfish, Chanos chanos Forsskål, off WA. Isorchis megas sp. nov. can be differentiated from the other species of Isorchis by possessing a single, large egg that is greater than 20% of the body length; having a shorter body (the largest specimen is less than 500 μm); and utilizing a scatophagid rather than a chanid host. Isorchis currani sp. nov. can be differentiated from species of Isorchis other than I. megas sp. nov. by utilizing a scatophagid rather than a chanid host; it is differentiated from I. megas sp. nov. in having eggs that are 11-15% of the body length. Isorchis anomalus sp. nov. can be differentiated from all other species of Isorchis in possessing an irregular shaped genital pore rather than one that is circular to oblong. A Bayesian inference analysis of partial 28S rDNA sequences of the three new species of Isorchis and 30 other haploporoids revealed 1) the monophyly of the Atractotrematidae Yamaguti, 1939, 2) the two species of Isorchis infecting S. multifasciata were each other's closest relative, and 3) that Isorchis was most closely related to Pseudomegasolena Machida and Komiya, 1976 rather than Atractotrema Goto and Ozaki, 1929 although sequence data are not yet available for a member of Pseudisorchis Ahmad, 1985.
Collapse
|
39
|
Cutmore SC, Diggles BK, Cribb TH. Transversotrema Witenberg, 1944 (Trematoda: Transversotrematidae) from inshore fishes of Australia: description of a new species and significant range extensions for three congeners. Syst Parasitol 2016; 93:639-52. [PMID: 27522364 DOI: 10.1007/s11230-016-9658-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/05/2016] [Indexed: 11/26/2022]
Abstract
Four transversotrematid trematodes are reported from commercial teleost species in Australian waters. Transversotrema hunterae n. sp. is described from three species of Sillago Cuvier (Sillaginidae) from Moreton Bay, south-east Queensland. Molecular characterisation using ITS2 rDNA confirmed this stenoxenic specificity of Transversotrema hunterae n. sp., with identical sequence data from Sillago maculata Quoy & Gaimard, S. analis Whitley and S. ciliata Cuvier. Phylogenetic analysis, based on 28S rDNA data, demonstrates that T. hunterae n. sp. belongs to the 'Transversotrema licinum clade' and is most closely related to Transversotrema licinum Manter, 1970 and T. polynesiae Cribb, Adlard, Bray, Sasal & Cutmore, 2014, with the three species forming a well-supported clade in all analyses. We extend the known host and geographical ranges of three previously described Transversotrema species, T. licinum, T. elegans Hunter, Ingram, Adlard, Bray & Cribb, 2010 and T. espanola Hunter & Cribb, 2012. The new records represent significant range extensions for the three species and permit further examination of the patterns of biogeographical distribution in Australian waters. Host-specificity of Transversotrema species is examined, and the degree to which morphological analysis can inform taxonomic studies of this group is discussed.
Collapse
Affiliation(s)
- Scott C Cutmore
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Ben K Diggles
- DigsFish Services Pty Ltd, Banksia Beach, QLD, 4507, Australia
| | - Thomas H Cribb
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|