1
|
Cutmore SC, Bray RA, Huston DC, Martin SB, Miller TL, Wee NQX, Yong RQY, Cribb TH. Twenty thousand fishes under the seas: Insights into the collection and storage of trematodes from the examination of 20,000 fishes in the tropical Indo west-Pacific. J Helminthol 2025; 99:e45. [PMID: 40051264 DOI: 10.1017/s0022149x24000968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The techniques employed to collect and store trematodes vary between research groups, and although these differences are sometimes necessitated by distinctions in the hosts examined, they are more commonly an artefact of instruction. As a general rule, we tend to follow what we were taught rather than explore new techniques. A major reason for this is that there are few technique papers in the published literature. Inspired by a collaborative workshop at the Trematodes 2024 symposium, we outline our techniques and processes for collecting adult trematodes from fishes and discuss the improvements we have made over 40 years of dissections of 20,000+ individual marine fishes. We present these techniques for two reasons: first, to encourage unified methods across the globe, with an aim to produce optimally comparable specimens across temporal periods, across geographic localities, and between research groups; and second, as a resource for inexperienced researchers. We stress the importance of understanding differences in host biology and the expected trematode fauna, which ultimately enables organised and productive dissections. We outline our dissection method for each key organ separately, discuss handling, fixation, and storage methods to generate the most uniform and comparable samples, and explore ethical considerations, issues of accurate host identification, and the importance and potential of clear record keeping.
Collapse
Affiliation(s)
- S C Cutmore
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland, 4101, Australia
- The University of Queensland, School of the Environment, St Lucia, Queensland, 4072, Australia
| | - R A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, LondonSW7 5BD, UK
| | - D C Huston
- Australian National Insect Collection, National Research Collections Australia, CSIRO, PO Box 1700, Canberra, ACT2601, Australia
| | - S B Martin
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia6150, Australia
| | - T L Miller
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland, 4101, Australia
- The University of Queensland, School of the Environment, St Lucia, Queensland, 4072, Australia
| | - N Q-X Wee
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland, 4101, Australia
| | - R Q-Y Yong
- Water Research Group, Unit of Environmental Sciences & Management, North-West University, Potchefstroom, North-West Province, South Africa
| | - T H Cribb
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland, 4101, Australia
| |
Collapse
|
2
|
Cribb TH, Cutmore SC, Wee NQX, Browne JG, Morales PD, Pitt KA. Lepocreadiidae (Trematoda) associated with gelatinous zooplankton (Cnidaria and Ctenophora) and fishes in Australian and Japanese waters. Parasitol Int 2024; 101:102890. [PMID: 38522781 DOI: 10.1016/j.parint.2024.102890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
We examined gelatinous zooplankton from off eastern Australia for lepocreadiid trematode metacercariae. From 221 specimens of 17 species of cnidarian medusae and 218 specimens of four species of ctenophores, infections were found in seven cnidarian and two ctenophore species. Metacercariae were distinguished using cox1 mtDNA, ITS2 rDNA and morphology. We identified three species of Prodistomum Linton, 1910 [P. keyam Bray & Cribb, 1996, P. orientale (Layman, 1930), and Prodistomum Type 3], two species of Opechona Looss, 1907 [O. kahawai Bray & Cribb, 2003 and O. cf. olssoni], and Cephalolepidapedon saba Yamaguti, 1970. Two species were found in cnidarians and ctenophores, three only in cnidarians, and one only in a ctenophore. Three Australian fishes were identified as definitive hosts; four species were collected from Scomber australasicus and one each from Arripis trutta and Monodactylus argenteus. Transmission of trematodes to these fishes by ingestion of gelatinous zooplankton is plausible given their mid-water feeding habits, although such predation is rarely reported. Combined morphological and molecular analyses of adult trematodes identified two cox1 types for C. saba, three cox1 types and species of Opechona, and six cox1 types and five species of Prodistomum of which only two are identified to species. All three genera are widely distributed geographically and have unresolved taxonomic issues. Levels of distinction between the recognised species varied dramatically for morphology, the three molecular markers, and host distribution. Phylogenetic analysis of 28S rDNA data extends previous findings that species of Opechona and Prodistomum do not form monophyletic clades.
Collapse
Affiliation(s)
- Thomas H Cribb
- School of the Environment, The University of Queensland, St Lucia, QLD 4072, Australia; Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland 4101, Australia.
| | - Scott C Cutmore
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland 4101, Australia
| | - Nicholas Q-X Wee
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland 4101, Australia
| | - Joanna G Browne
- School of Environment and Science and Australian Rivers Institute, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia; Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| | | | - Kylie A Pitt
- School of Environment and Science and Australian Rivers Institute, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
3
|
Cutmore SC, Corner RD, Cribb TH. Morphological constraint obscures richness: a mitochondrial exploration of cryptic richness in Transversotrema (Trematoda: Transversotrematidae). Int J Parasitol 2023; 53:595-635. [PMID: 37488048 DOI: 10.1016/j.ijpara.2023.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Species of Transversotrema Witenberg, 1944 (Transversotrematidae) occupy a unique ecological niche for the Trematoda, living externally under the scales of their teleost hosts. Previous studies of the genus have been impeded partly by limited variation in ribosomal DNA sequence data between closely related species and partly by a lack of morphometrically informative characters. Here, we assess richness of the tropical Indo-west Pacific species through parallel phylogenetic and morphometric analyses, generating cytochrome c oxidase subunit 1 mitochondrial sequence data and morphometric data for hologenophore specimens from Australia, French Polynesia, Japan and Palau. These analyses demonstrate that molecular data provide the only reliable basis for species identification; host distribution, and to a lesser extent morphology, are useful for identifying just a few species of Transversotrema. We infer that a combination of morphological simplicity and infection site constraint has led to the group displaying exceptionally low morphological diversification. Phylogenetic analyses of the mitochondrial data broadly support previous systematic interpretations based on ribosomal data, but also demonstrate the presence of several morphologically and ecologically cryptic species. Ten new species are described, eight from the Great Barrier Reef, Australia (Transversotrema chrysallis n. sp., Transversotrema daphnidis n. sp., Transversotrema enceladi n. sp., Transversotrema hyperionis n. sp., Transversotrema iapeti n. sp., Transversotrema rheae n. sp., Transversotrema tethyos n. sp., and Transversotrema titanis n. sp.) and two from off Japan (Transversotrema methones n. sp. and Transversotrema panos n. sp.). There are now 26 Transversotrema species known from Australian marine fishes, making it the richest trematode genus for the fauna.
Collapse
Affiliation(s)
- Scott C Cutmore
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland 4101, Australia.
| | - Richard D Corner
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia
| | - Thomas H Cribb
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia
| |
Collapse
|
4
|
Corner RD, Cribb TH, Cutmore SC. Rich but morphologically problematic: an integrative approach to taxonomic resolution of the genus Neospirorchis (Trematoda: Schistosomatoidea). Int J Parasitol 2023; 53:363-380. [PMID: 37075879 DOI: 10.1016/j.ijpara.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 04/21/2023]
Abstract
Neospirorchis Price, 1934 is a genus of blood flukes that infect the cardiovascular system, including vessels surrounding the nervous systems of marine turtles. Although the genus comprises just two named species, the available molecular data suggest substantial richness which has not yet been formally described. The lack of description of species of Neospirorchis is probably explained by their small, slender, elongate bodies, which allow them to infect numerous organs and vessels in their hosts, such as the heart and peripheral vessels of nervous system, endocrine organs, thymus, mesenteric vessels, and gastrointestinal submucosa. This morphology and site of infection means that collecting good quality, intact specimens is generally difficult, ultimately hampering the formal description of species. Here we supplement limited morphological samples with multi-locus genetic data to formally describe four new species of Neospirorchis infecting marine turtles from Queensland, Australia and Florida, USA; Neospirorchis goodmanorum n. sp. and Neospirorchis deburonae n. sp. are described from Chelonia mydas, Neospirorchis stacyi n. sp. is described from Caretta caretta, and Neospirorchis chapmanae n. sp. from Ch. mydas and Ca. caretta. The four new species are delineated from each other and the two known species based on the arrangement of the male and female reproductive organs, on the basis of cytochrome c oxidase subunit 1 (cox1), internal transcribed spacer 2 (ITS2), and 28S ribosomal DNA (rDNA) molecular data, site of infection, and host species. Molecular evidence for three further putative, presently undescribable, species is also reported. We propose that this integrated characterisation of species of Neospirorchis, based on careful consideration of host, molecular and key morphological data, offers a valuable solution to the slow rate of descriptions for this important genus. We provide the first known life cycle data for Neospirorchis in Australian waters, from Moreton Bay, Queensland; consistent with reports from the Atlantic, sporocysts were collected from a terebellid polychaete and genetically matched to an unnamed species of Neospirorchis infecting Ch. mydas from Queensland and Florida.
Collapse
Affiliation(s)
- Richard D Corner
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland, 4072, Australia.
| | - Thomas H Cribb
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland, 4072, Australia
| | - Scott C Cutmore
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland 4101, Australia
| |
Collapse
|
5
|
Motta G, Caffara M, Fioravanti ML, Bottaro M, Avian M, Terlizzi A, Tedesco P. Parasitic infection in the scyphozoan Rhizostoma pulmo (Macri, 1778). Sci Rep 2023; 13:5549. [PMID: 37019902 PMCID: PMC10076428 DOI: 10.1038/s41598-023-31693-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Very little information is reported for parasites of cnidarians, therefore, the present work aimed to investigate parasitic infections in one of the most widespread jellyfish in the Mediterranean Sea, Rhizostoma pulmo. The goals were to determine prevalence and intensity of parasites in R. pulmo, identify the species involved through morphological and molecular analysis, test whether infection parameters differ in different body parts and in relation to jellyfish size. 58 individuals were collected, 100% of them infected with digenean metacercariae. Intensity varied between 18.7 ± 6.7 per individual in 0-2 cm diameter jellyfish up to 505 ± 50.6 in 14 cm ones. Morphological and molecular analyses suggest that the metacercariae belonged to the family Lepocreadiidae and could be possibly assigned to the genus Clavogalea. Prevalence values of 100% suggest that R. pulmo is an important intermediate host in the life cycle of lepocreadiids in the region. Our findings also support the hypothesis that R. pulmo is an important part in the diet of teleost fish, which are reported as definitive hosts of lepocreadiids, since trophic transmission is necessary for these parasites to complete their life cycles. Parasitological data may therefore be useful to investigate fish-jellyfish predation, integrating traditional methods such as gut contents analysis.
Collapse
Affiliation(s)
- Gregorio Motta
- Department of Life Science, University of Trieste, 34127, Trieste, Italy
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn-Italian National Institute for Marine Biology, Ecology and Biotechnology, 80121, Napoli, Italy
| | - Monica Caffara
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell'Emilia, 40064, Bologna, Italy
| | - Maria Letizia Fioravanti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell'Emilia, 40064, Bologna, Italy
| | - Massimiliano Bottaro
- Department of Integrative Marine Ecology (EMI), Genoa Marine Centre (GMC), Stazione Zoologica Anton Dohrn-Italian National Institute of Marine Biology, Ecology and Biotechnology, Villa del Principe, Piazza del Principe 4, 16126, Genoa, Italy
| | - Massimo Avian
- Department of Life Science, University of Trieste, 34127, Trieste, Italy
| | - Antonio Terlizzi
- Department of Life Science, University of Trieste, 34127, Trieste, Italy
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn-Italian National Institute for Marine Biology, Ecology and Biotechnology, 80121, Napoli, Italy
| | - Perla Tedesco
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell'Emilia, 40064, Bologna, Italy.
| |
Collapse
|
6
|
Bray RA, Cutmore SC, Cribb TH. Proposal of a new genus, Doorochen (Digenea: Lepocreadioidea), for reef-inhabiting members of the genus Postlepidapedon Zdzitowiecki, 1993. Parasitol Int 2023; 93:102710. [PMID: 36423873 DOI: 10.1016/j.parint.2022.102710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
A new genus, Doorochen n. gen., is erected for four species of Postlepidapedon Zdzitowiecki, 1993, all of which inhabit members of the labroid genus Choerodon Bleeker, the tuskfishes, and which molecular phylogenies have indicated are not congeneric with the type-species, P. opisthobifurcatum (Zdzitowiecki, 1990) Zdzitowiecki, 1993. Doorochen secundum (Durio & Manter, 1968) n. comb. from Choerodon graphicus (De Vis), the Graphic tuskfish, from the Great Barrier Reef (GBR) and New Caledonia is designated the type-species of the new genus. Other species recognised are Doorochen spissum (Bray, Cribb & Barker, 1997) n. comb. from C. venustus (De Vis), the Venus tuskfish, C. cyanodus (Richardson), the Blue tuskfish, and C. graphicus from the GBR; D. uberis (Bray, Cribb & Barker, 1997) n. comb. from C. schoenleinii (Valenciennes), the Blackspot tuskfish, and C. venustus from the GBR and Moreton Bay; and D. philippinense (Machida, 2004) n. comb. from C. anchorago (Bloch), the Orange-dotted tuskfish, from Philippine waters. In addition to these four species, two new species are described: D. zdzitowieckii n. sp. from C. fasciatus (Günther), the Harlequin tuskfish, and C. graphicus from the GBR; and D. goorchana n. sp. from C. anchorago from the GBR and Palau. The genus Postlepidapedon is now considered to comprise just two species, P. opisthobifurcatum and P. quintum Bray & Cribb, 2001. The relationships of Doorochen, Postlepidapedon, Myzoxenus Manter, 1934 and Intusatrium Durio & Manter, 1968 in the family Lepidapedidae Yamaguti, 1958 are discussed.
Collapse
Affiliation(s)
- Rodney A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Scott C Cutmore
- Queensland Museum, Biodiversity and Geosciences Program, South Brisbane, Queensland 4101, Australia
| | - Thomas H Cribb
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|