1
|
Paolino G, Di Nicola MR, Raggi C, Camerini S, Casella M, Pasquini L, Zanetti C, Russo V, Mercuri SR, Lugini L, Federici C. Enhancing the Efficacy of Melanoma Treatment: The In Vitro Chemosensitising Impact of Vipera ammodytes Venom on Human Melanoma Cell Lines. Toxins (Basel) 2025; 17:152. [PMID: 40278650 PMCID: PMC12031473 DOI: 10.3390/toxins17040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Research on viper venom has expanded into diverse medical applications, including cancer treatment. This study investigates the potential of Vipera ammodytes venom in oncology, evaluating its cytotoxicity and chemosensitising effects on malignant melanoma cells. Proteomic analysis identified 125 proteins in the venom, with Phospholipases A2, C-type lectins, and metalloproteinases among the most abundant components. These proteins are associated with cytotoxic, anti-proliferative, and tumor-inhibiting properties. Three melanoma cell lines (M001, Me501, and A375) were used to assess venom cytotoxicity. The IC50 values demonstrated consistent venom sensitivity across cell lines (approximately 1.1 µg/mL). Combined treatment with venom and cisplatin significantly increased the cytotoxicity compared to single-agent treatments. Notably, venom enhanced the sensitivity of cisplatin in resistant cell lines (M001 and Me501), increasing cell mortality by up to 40%. The A375 cell line, inherently more sensitive to cisplatin, exhibited additional cytotoxic effects only at higher venom doses. The morphological changes observed under microscopy confirmed venom-induced cellular changes, further supporting its potential as an anti-cancer agent. The selective targeting of melanoma cells by venom components, particularly in muscle-associated metastases, suggests a unique therapeutic niche. While cisplatin was chosen for this pilot study due to its established cytotoxicity, future research will explore venom combinations with contemporary treatments such as immunotherapy and targeted therapies. Although preliminary, these findings provide a foundation for integrating venom-based strategies into advanced melanoma protocols, aiming to improve outcomes in resistant or metastatic cases.
Collapse
Affiliation(s)
- Giovanni Paolino
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (G.P.); (S.R.M.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Matteo Riccardo Di Nicola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Carla Raggi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.R.); (C.Z.); (L.L.)
| | - Serena Camerini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.C.); (M.C.); (L.P.)
| | - Marialuisa Casella
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.C.); (M.C.); (L.P.)
| | - Luca Pasquini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.C.); (M.C.); (L.P.)
| | - Cristiana Zanetti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.R.); (C.Z.); (L.L.)
| | - Vincenzo Russo
- Unit of Immuno-Biotherapy of Melanoma and Solid Tumors, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy;
| | - Santo Raffaele Mercuri
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (G.P.); (S.R.M.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Luana Lugini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.R.); (C.Z.); (L.L.)
| | - Cristina Federici
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.R.); (C.Z.); (L.L.)
| |
Collapse
|
2
|
Alvitigala BY, Dissanayake HA, Weeratunga PN, Padmaperuma PACD, Gooneratne LV, Gnanathasan CA. Haemotoxicity of snakes: a review of pathogenesis, clinical manifestations, novel diagnostics and challenges in management. Trans R Soc Trop Med Hyg 2025; 119:283-303. [PMID: 39749491 DOI: 10.1093/trstmh/trae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/29/2024] [Accepted: 08/29/2024] [Indexed: 01/04/2025] Open
Abstract
Haemotoxicity is the most common complication of systemic envenoming following snakebite, leading to diverse clinical syndromes ranging from haemorrhagic to prothrombotic manifestations. Key haematological abnormalities include platelet dysfunction, venom-induced consumption coagulopathy, anticoagulant coagulopathy and organ-threatening thrombotic microangiopathy. Diagnostic methods include the bedside whole blood clotting test, laboratory coagulation screening and other advanced methods such as thromboelastogram and clot strength analysis. The primary management strategies are venom neutralisation with antivenom and correction of coagulopathy with blood component transfusions, while options such as plasma exchange are utilised in certain cases. Recent advancements in understanding the pathogenesis of haemotoxicity have facilitated the development of new diagnostic and treatment modalities. This review summarises current knowledge on the pathogenesis, diagnosis, clinical and laboratory manifestations and treatment of the haematological effects of snake envenoming. Furthermore, it highlights important challenges concerning diagnosis and management. Addressing these challenges is crucial for achieving the WHO's goal of reducing deaths and disabilities caused by snakebites by 2030.
Collapse
Affiliation(s)
| | - Harsha A Dissanayake
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, P.O. 00800, Sri Lanka
| | - Praveen N Weeratunga
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, P.O. 00800, Sri Lanka
| | | | | | | |
Collapse
|
3
|
Sandesha VD, Naveen P, Manikanta K, Mahalingam SS, Girish KS, Kemparaju K. Hump-Nosed Pit Viper ( Hypnale hypnale) Venom-Induced Irreversible Red Blood Cell Aggregation, Inhibition by Monovalent Anti-Venom and N-Acetylcysteine. Cells 2024; 13:994. [PMID: 38920625 PMCID: PMC11201549 DOI: 10.3390/cells13120994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Envenomation by the Hypnale hypnale in the Western Ghats of India (particularly in the Malabar region of Kerala) and the subcontinent island nation of Sri Lanka is known to inflict devastating mortality and morbidity. Currently, H. hypnale bites in India are devoid of anti-venom regimens. A detailed characterization of the venom is essential to stress the need for therapeutic anti-venom. Notably, the deleterious effects of this venom on human blood cells have largely remained less explored. Therefore, in continuation of our previous study, in the present study, we envisioned investigating the effect of venom on the morphological and physiological properties of red blood cells (RBCs). The venom readily induced deleterious morphological changes and, finally, the aggregation of washed RBCs. The aggregation process was independent of the ROS and the intracellular Ca2+ ion concentration. Confocal and scanning electron microscopy (SEM) images revealed the loss of biconcave morphology and massive cytoskeletal disarray. Crenation or serrated plasma membrane projections were evenly distributed on the surface of the RBCs. The venom did not cause the formation of methemoglobin in washed RBCs but was significantly induced in whole blood. Venom did not affect glucose uptake and Na+/K+ -ATPase activity but inhibited glucose 6 phosphate dehydrogenase activity and decreased the fluidity of the plasma membrane. Venom-induced RBC aggregates exhibited pro-coagulant activity but without affecting platelet aggregation. In pre-incubation or co-treatment studies, none of the bioactive compounds, such as melatonin, curcumin, fisetin, berberine, and quercetin, sugars such as mannose and galactose, and therapeutic polyvalent anti-venoms (Bharat and VINS) were inhibited, whereas only N-acetylcysteine and H. hypnale monovalent anti-venom could inhibit venom-induced deleterious morphological changes and aggregation of RBCs. In post-treatment studies, paradoxically, none of the bioactives and anti-venoms, including N-acetylcysteine and H. hypnale monovalent anti-venom, reversed the venom-induced RBC aggregates.
Collapse
Affiliation(s)
- Vaddaragudisalu D. Sandesha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Puttaswamy Naveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Kurnegala Manikanta
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Shanmuga S. Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Kesturu S. Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572103, Karnataka, India
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| |
Collapse
|
4
|
Muduli N, Aparna S, Patri M, Sahoo KK. Saffron stigma extract and crocin play an important neuroprotective role in therapeutic measures against benzo[a]pyrene-induced behavioral alterations in zebrafish. Drug Chem Toxicol 2024; 47:131-142. [PMID: 37649374 DOI: 10.1080/01480545.2023.2250576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Saffron is a well-known expensive spice, which has many pharmacological properties against a variety of ailments. Saffron stigma and leaf contain apocarotenoids and bioactive phytochemicals having therapeutic potential against human disorders. Polycyclic aromatic hydrocarbons (PAHs) are one of the most common toxins in today's aquatic environment. Benzo[a]pyrene (B[a]P), a high molecular weight PAHs prototype, and reported as a potent neurotoxicant, which is profoundly contaminating the environment. The present study investigated the therapeutic efficacy of Saffron stigma extracts and crocin, on B[a]P-induced behavioral changes, altered antioxidant activities, and neurodegeneration in zebrafish. The behavioral responses monitored through the light-dark preference test and novel tank diving test suggested that B[a]P treated zebrafish group showed alteration in anxiolytic-like behavior. Animals exhibited their native behavior when treated alone with Saffron Stigma Extract (SSE) and crocin, an apocarotenoid which also reduced the altered behavior induced by B[a]P. The SSE and crocin stimulated the antioxidant activities with an accumulation of reduced glutathione and catalase enzymes, indicating a protective role against B[a]P-induced oxidative stress and behavioral deficits. The histopathological studies showed the percentage change of pyknotic cell counts in the Periventricular Gray Zone region of the Optic Tectum was 1.74 folds high in B[a]P treated animals as compared to control. Furthermore, the treatment of SSE and crocin reduced the pyknosis process induced by B[a]P-mediated neurodegeneration, possibly due to a better protective mechanism. Future studies may reveal the detailed mechanisms of action of potent SSE and crocin like bioactive compounds having neuroprotective potentials against neurodegenerative diseases.
Collapse
Affiliation(s)
- Namita Muduli
- Department of Botany, Ravenshaw University, Cuttack, India
| | - Sai Aparna
- Department of Zoology, Ravenshaw University, Cuttack, India
| | - Manorama Patri
- Department of Zoology, Ravenshaw University, Cuttack, India
| | | |
Collapse
|
5
|
Abd El-Azim MM, Mousa MK, Abdelmaaboud RM, Rezq NN, Mohammed SS. Evaluation of the role of neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR) and mean platelet volume (MPV) time series as predictors of diagnosis and prognosis of hemotoxic snakebite. Biomarkers 2023; 28:652-662. [PMID: 37902066 DOI: 10.1080/1354750x.2023.2277668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/22/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND This study aimed to assess the predictive value of NLR, PLR, and MPV time series for diagnosis and prognosis of hemotoxic snakebite envenomation. METHODS This is a prospective study among snakebite patients admitted to the Poison Control Center of Ain Shams University Hospitals and Assiut University Hospitals from the beginning of July 2019 to the end of October 2021. Patients were classified according to their clinical severity into three groups: mild, moderate, and severe. RESULTS The maximum incidence of snakebite was found in males (95%) from rural areas (80%); at lower limbs (70%); at night (51%); and during the autumn season (43.3%). The admission NLR and PLR can predict hemotoxic snakebite envenomation with an AUC of 0.940 and 0.569. The combination of NLR with PLR can develop a more predominant prediction of snakebite envenomation with an area under the curve (AUC) of 0.979. Furthermore, higher admission NLR and PLR levels are associated with prolonged hospital stays. CONCLUSION While NLR and PLR levels may be helpful in the diagnosis of snakebite, MPV plays no part in the prognosis of snakebite patients. Serial NLR, PLR initially, at 24 hours, and predischarge can be used to evaluate the early treatment response.
Collapse
Affiliation(s)
- Mariam M Abd El-Azim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mona K Mousa
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ragaa M Abdelmaaboud
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nabil N Rezq
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sarah S Mohammed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Li W, Ren C, Fei C, Wang Y, Xue Q, Li L, Yin F, Li W. Analysis of the chemical composition changes of Gardeniae Fructus before and after processing based on ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J Sep Sci 2021; 44:981-991. [PMID: 33351278 DOI: 10.1002/jssc.202000957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/22/2020] [Accepted: 12/18/2020] [Indexed: 01/24/2023]
Abstract
Gardeniae Fructus, the dry fruit of Gardenia jasminoides Ellis, has been widely used for the treatment of different diseases. Although four types of processed Gardeniae Fructus products, characterized by differing effects, are available for clinical use, little is known regarding the respective processing mechanisms. In this study, ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with multivariate statistical analysis was applied to characterize the chemical profiles of the differently processed Gardeniae Fructus products and to determine differences in their chemical compositions, thereby enabling us to identify those active compounds associated with the observed clinical effects. A total of 125 compounds were accordingly identified, among which, 56 were established as primary contributors to the significant differences (P < 0.01) between crude and processed Gardeniae Fructus, based on t-test analysis. Furthermore, the potential mechanisms underlying the chemical transformations that occurred during processing were discussed. The findings of this study may not only contribute to the more effective quality control of Gardeniae Fructus but also provide basic information for elucidating the mechanisms underlying the changes in chemical constituents in response to processing, and provide a basis for further investigations of Gardeniae Fructus processing mechanisms.
Collapse
Affiliation(s)
- Wenjing Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Chenchen Ren
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Chenghao Fei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yulin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Qianqian Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
7
|
Nair R, Riddle EA, Thrall MA. Hemolytic anemia, spherocytosis, and thrombocytopenia associated with honey bee envenomation in a dog. Vet Clin Pathol 2019; 48:620-623. [PMID: 31228292 DOI: 10.1111/vcp.12747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/26/2023]
Abstract
This case report describes a massive honey bee envenomation in a 14-month-old male Belgian Malinois dog from St. Kitts, West Indies. Acute and delayed onsets of hemolytic anemia, echinocytosis, spherocytosis, thrombocytopenia, hemoglobinemia, and hemoglobinuria developed following envenomation. The dog recovered after treatment with glucocorticoids and supportive therapy. Spherocytosis, hemolysis, and thrombocytopenia in patients with massive bee envenomation are likely due to the direct toxic effects of the primary components of bee venom, melittin and phospholipase A2 (PLA2 ). Mellitin causes hemolysis by forming large pores in erythrocytes resulting in leakage of hemoglobin and also causes spectrin stiffening and resultant echinocyte and spherocyte formation. Melittin also stimulates PLA2 , a hydrolase that causes echinocytosis and spherocytosis, in vivo and in vitro, and mitochondrial breakdown in platelets. However, delayed manifestations could be attributed to immune-mediated mechanisms from the generation of antibodies against damaged erythrocytes and platelet membrane proteins.
Collapse
Affiliation(s)
- Rajeev Nair
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | - Emily A Riddle
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | - Mary Anna Thrall
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| |
Collapse
|
8
|
Gois PHF, Martines MS, Ferreira D, Volpini R, Canale D, Malaque C, Crajoinas R, Girardi ACC, Massola Shimizu MH, Seguro AC. Allopurinol attenuates acute kidney injury following Bothrops jararaca envenomation. PLoS Negl Trop Dis 2017; 11:e0006024. [PMID: 29155815 PMCID: PMC5714385 DOI: 10.1371/journal.pntd.0006024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/04/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
Snakebites have been recognized as a neglected public health problem in several tropical and subtropical countries. Bothrops snakebites frequently complicate with acute kidney injury (AKI) with relevant morbidity and mortality. To date, the only treatment available for Bothrops envenomation is the intravenous administration of antivenom despite its several limitations. Therefore, the study of novel therapies in Bothrops envenomation is compelling. The aim of this study was to evaluate the protective effect of Allopurinol (Allo) in an experimental model of Bothrops jararaca venom (BJ)-associated AKI. Five groups of Wistar rats were studied: Sham, Allo, BJ, BJ+Allo, BJ+ipAllo. BJ (0.25 mg/kg) was intravenously injected during 40'. Saline at same dose and infusion rate was administered to Sham and Allo groups. Allo and BJ+Allo groups received Allo (300 mg/L) in the drinking water 7 days prior to Saline or BJ infusion respectively. BJ+ipAllo rats received intraperitoneal Allo (25 mg/Kg) 40' after BJ infusion. BJ rats showed markedly reduced glomerular filtration rate (GFR, inulin clearance) associated with intense renal vasoconstriction, hemolysis, hemoglobinuria, reduced glutathione and increased systemic and renal markers of nitro-oxidative stress (Nitrotyrosine). Allo ameliorated GFR, renal blood flow (RBF), renal vascular resistance and arterial lactate levels. In addition, Allo was associated with increased serum glutathione as well as reduced levels of plasma and renal Nitrotyrosine. Our data show that Allo attenuated BJ-associated AKI, reduced oxidative stress, improved renal hemodynamics and organ perfusion. It might represent a novel adjuvant approach for Bothrops envenomation, a new use for an old and widely available drug.
Collapse
Affiliation(s)
- Pedro Henrique França Gois
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
- Royal Brisbane and Women’s Hospital, Nephrology Department, Brisbane, Australia
- * E-mail:
| | - Monique Silva Martines
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Daniela Ferreira
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Rildo Volpini
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Daniele Canale
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Ceila Malaque
- Vital Brazil Hospital, Butantan Institute, Sao Paulo, Brazil
| | - Renato Crajoinas
- Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | | | - Maria Heloisa Massola Shimizu
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Antonio Carlos Seguro
- Laboratory of Medical Research–LIM12, Nephrology Department, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| |
Collapse
|
9
|
Melatonin inhibits snake venom and antivenom induced oxidative stress and augments treatment efficacy. Acta Trop 2017; 169:14-25. [PMID: 28089603 DOI: 10.1016/j.actatropica.2017.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/10/2016] [Accepted: 01/07/2017] [Indexed: 12/25/2022]
Abstract
Snakebite is a neglected health hazard. Its patho-physiology has largely been focused on systemic and local toxicities; whereas, venom and antivenom induced oxidative stress has long been ignored. Antivenom therapy although neutralizes venom lethality and saves many lives, remains ineffective against oxidative stress. This prompted us to complement antivenom with an antioxidant molecule melatonin that would protect against oxidative stress and increase the efficacy of the existing snakebite therapy. Here we show that D. russelli and E. carinatus venoms induce strong oxidative stress that persists even after antivenom administration in mice model. Additionally, antivenoms also induce oxidative stress. Polyvalent antivenom induce more oxidative stress than monovalent antivenom. Strikingly, antivenom and melatonin together not only inhibit venom and antivenom induced oxidative stress but also significantly reduce the neutralizing antivenom dose. This study provides a therapeutic potential for enhancing the existing snakebite therapy. The combined treatment of antivenom+melatonin would prevent the upsurge of oxidative stress as well as minimize the antivenom load. Thus the investigation offers immense scope for physicians and toxinologists to reinvestigate, design new strategies and think beyond the conventional mode of antivenom therapy.
Collapse
|
10
|
Katkar G, Sharma RD, Vishalakshi G, Naveenkumar S, Madhur G, Thushara R, Narender T, Girish K, Kemparaju K. Lupeol derivative mitigates Echis carinatus venom-induced tissue destruction by neutralizing venom toxins and protecting collagen and angiogenic receptors on inflammatory cells. Biochim Biophys Acta Gen Subj 2015; 1850:2393-409. [DOI: 10.1016/j.bbagen.2015.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 11/26/2022]
|
11
|
Sharma RD, Katkar GD, Sundaram MS, Paul M, NaveenKumar SK, Swethakumar B, Hemshekhar M, Girish KS, Kemparaju K. Oxidative stress-induced methemoglobinemia is the silent killer during snakebite: a novel and strategic neutralization by melatonin. J Pineal Res 2015; 59:240-54. [PMID: 26103459 DOI: 10.1111/jpi.12256] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/19/2015] [Indexed: 12/20/2022]
Abstract
Oxidative stress-induced methemoglobinemia remained an untouched area in venom pharmacology till date. This study for the first time explored the potential of animal venoms to oxidize hemoglobin to methemoglobin. In in vitro whole-blood assay, methemoglobin forming ability of venoms varied as Naja naja > Ophiophagus hannah > Echis carinatus > Daboia russellii > Apis mellifera > Mesobuthus tamulus > Hippasa partita. Being highly potential, N. naja venom was further studied to observe methemoglobin formation in RBCs and in combinations with PMNs and PBMCs, where maximum effect was observed in RBCs + PMNs combination. Naja naja venom/externally added methemoglobin-induced methemoglobin formation was in parallel with ROS generation in whole blood/RBCs/RBCs + PMNs/RBCs + PBMCs. In in vivo studies, the lethal dose (1 mg/kg body weight, i.p.) of N. naja venom readily induced methemoglobin formation, ROS generation, expression of inflammatory markers, and hypoxia-inducible factor-3α. Although the mice administered with three effective doses of antivenom recorded zero mortality; the methemoglobin and ROS levels remained high. However, one effective dose of antivenom when administered along with melatonin (1:50; venom/melatonin, w/w), not only offered 100% survival of experimental mice, but also significantly reduced methemoglobin level, and oxidative stress markers including hypoxia-inducible factor-3α. This study provides strong drive that, complementing melatonin would not only reduce the antivenom load, but for sure greatly increase the success rate of antivenom therapy and drastically minimize the global incidence of snakebite deaths. However, further detailed investigations are needed before translating the combined therapy towards the bed side.
Collapse
Affiliation(s)
- Rachana D Sharma
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| | - Gajanan D Katkar
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| | | | - Manoj Paul
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| | | | | | - Mahadevappa Hemshekhar
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Kesturu S Girish
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur, India
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Mysuru, India
| |
Collapse
|
12
|
Inflammation and oxidative stress in viper bite: An insight within and beyond. Toxicon 2015; 98:89-97. [DOI: 10.1016/j.toxicon.2015.02.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/16/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022]
|
13
|
Razavi BM, Hosseinzadeh H. Saffron as an antidote or a protective agent against natural or chemical toxicities. ACTA ACUST UNITED AC 2015; 23:31. [PMID: 25928729 PMCID: PMC4418072 DOI: 10.1186/s40199-015-0112-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022]
Abstract
Saffron (Crocus sativus) is an extensively used food additive for its color and taste. Since ancient times this plant has been introduced as a marvelous medicine throughout the world. The wide spectrum of saffron pharmacological activities is related to its major constituents including crocin, crocetin and safranal. Based on several studies, saffron and its active ingredients have been used as an antioxidant, antiinflammatory and antinociceptive, antidepressant, antitussive, anticonvulsant, memory enhancer, hypotensive and anticancer. According to the literatures, saffron has remarkable therapeutic effects. The protective effects of saffron and its main constituents in different tissues including brain, heart, liver, kidney and lung have been reported against some toxic materials either natural or chemical toxins in animal studies. In this review article, we have summarized different in vitro and animal studies in scientific databases which investigate the antidotal and protective effects of saffron and its major components against natural toxins and chemical-induced toxicities. Due to the lake of human studies, further investigations are required to ascertain the efficacy of saffron as an antidote or a protective agent in human intoxication.
Collapse
Affiliation(s)
- Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Intrahippocampal infusion of crotamine isolated from Crotalus durissus terrificus alters plasma and brain biochemical parameters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:11438-49. [PMID: 25380458 PMCID: PMC4245622 DOI: 10.3390/ijerph111111438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 11/17/2022]
Abstract
Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. Here we sought to investigate the inflammatory and toxicological effects induced by the intrahippocampal administration of crotamine isolated from Crotalus whole venom. Adult rats received an intrahippocampal infusion of crotamine or vehicle and were euthanized 24 h or 21 days after infusion. Plasma and brain tissue were collected for biochemical analysis. Complete blood count, creatinine, urea, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), creatine-kinase (CK), creatine kinase-muscle B (CK-MB) and oxidative parameters (assessed by DNA damage and micronucleus frequency in leukocytes, lipid peroxidation and protein carbonyls in plasma and brain) were quantified. Unpaired and paired t-tests were used for comparisons between saline and crotamine groups, and within groups (24 h vs. 21 days), respectively. After 24 h crotamine infusion promoted an increase of urea, GOT, GPT, CK, and platelets values (p ≤ 0.01), while red blood cells, hematocrit and leukocytes values decreased (p ≤ 0.01). Additionally, 21 days after infusion crotamine group showed increased creatinine, leukocytes, TBARS (plasma and brain), carbonyl (plasma and brain) and micronucleus compared to the saline-group (p ≤ 0.01). Our findings show that crotamine infusion alter hematological parameters and cardiac markers, as well as oxidative parameters, not only in the brain, but also in the blood, indicating a systemic pro-inflammatory and toxicological activity. A further scientific attempt in terms of preserving the beneficial activity over toxicity is required.
Collapse
|
15
|
Propensity of crocin to offset Vipera russelli venom induced oxidative stress mediated neutrophil apoptosis: a biochemical insight. Cytotechnology 2014; 68:73-85. [PMID: 25149285 DOI: 10.1007/s10616-014-9752-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 06/07/2014] [Indexed: 10/24/2022] Open
Abstract
Viper envenomation results in inflammation at the bitten site as well as target organs. Neutrophils and other polymorphonuclear leukocytes execute inflammation resolving mechanism and will undergo apoptosis after completing the task. However, the target specific toxins induce neutrophil apoptosis at the bitten site and in circulation prior to their function, thus reducing their number. Circulating activated neutrophils are major source of inflammatory cytokines and leakage of reactive oxygen species (ROS)/other toxic intermediates resulting in aggravation of inflammatory response at the bitten/target site. Therefore, neutralization of venom induced neutrophil apoptosis reduces inflammation besides increasing the functional neutrophil population. Therefore, the present study investigates the venom induced perturbances in isolated human neutrophils and its neutralization by crocin (Crocus sativus) a potent antioxidant carotenoid. Human neutrophils on treatment with venom resulted in altered ROS generation, intracellular Ca(2+) mobilization, mitochondrial membrane depolarization, cyt-c translocation, caspase activation, phosphatidylserine externalization and DNA damage. On the other hand significant protection against oxidative stress and apoptosis were evidenced in crocin pre-treated groups. In conclusion the viper venom induces neutrophil apoptosis and results in aggravation of inflammation and tissue damage. The present study demands the necessity of an auxiliary therapy in addition to antivenin therapy to treat secondary/overlooked complications of envenomation.
Collapse
|