1
|
Lu C, Li C, Gu N, Yang F. Emerging Elastic Micro-Nano Materials for Diagnosis and Treatment of Thrombosis. RESEARCH (WASHINGTON, D.C.) 2025; 8:0614. [PMID: 40028043 PMCID: PMC11868703 DOI: 10.34133/research.0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Thrombus is a blood clot that forms in a blood vessel at the point of flaking. Thrombosis is closely associated with cardiovascular diseases caused by different sources and factors. However, the current clinical methods of thrombus diagnosis and treatment still have problems with targeting, permeability, stability, and biosafety. Therefore, in recent years, based on the development of micro/nano technology, researchers have tried to develop some new strategies for the diagnosis and treatment of thrombosis. Due to the unique structural characteristics, the micro-nano materials in physiological environments show excellent transport and delivery properties such as better in vivo circulation, longer life span, better targeting ability, and controllable cellular internalization. Especially, elasticity and stiffness are inherent mechanical properties of some well-designed micro-nano materials, which can make them better adapted to the needs of thrombosis diagnosis and treatment. Herein, this review first introduces the thrombotic microenvironment to characterize the thrombus development process. Then, to fine-tune the pathological occurrence and development of thrombosis, the role of elastic micro-nano materials for thrombus diagnosis and treatment is summarized. The properties, preparation methods, and biological fate of these materials have been discussed in detail. Following, the applications of elastic micro-nano materials in biomedical imaging, drug delivery, and therapy of thrombosis are highlighted. Last, the shortcomings and future design strategies of elastic micro-nano materials in diagnosis and treatment of clinical thrombosis are discussed. This review will provide new ideas for the use of nanotechnology in clinical diagnosis and treatment of thrombus in the future.
Collapse
Affiliation(s)
- Chenxin Lu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, P. R. China
| | - Chunjian Li
- Department of Cardiology,
The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Ning Gu
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School,
Nanjing University, Nanjing 210093, P. R. China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
2
|
Xie Y, Huang Y, Stevenson HCS, Yin L, Zhang K, Islam ZH, Marcum WA, Johnston C, Hoyt N, Kent EW, Wang B, Hossack JA. Sonothrombolysis Using Microfluidically Produced Microbubbles in a Murine Model of Deep Vein Thrombosis. Ann Biomed Eng 2025; 53:109-119. [PMID: 39249170 PMCID: PMC11782319 DOI: 10.1007/s10439-024-03609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
The need for safe and effective methods to manage deep vein thrombosis (DVT), given the risks associated with anticoagulants and thrombolytic agents, motivated research into innovative approaches to resolve blood clots. In response to this challenge, sonothrombolysis is being explored as a technique that combines microbubbles, ultrasound, and thrombolytic agents to facilitate the aggressive dissolution of thrombi. Prior studies have indicated that relatively large microbubbles accelerate the dissolution process, either in an in vitro or an arterial model. However, sonothrombolysis using large microbubbles must be evaluated in venous thromboembolism diseases, where blood flow velocity is not comparable. In this study, the efficacy of sonothrombolysis was validated in a murine model of pre-existing DVT. During therapy, microfluidically produced microbubbles of 18 μm diameter and recombinant tissue plasminogen activator (rt-PA) were administered through a tail vein catheter for 30 min, while ultrasound was applied to the abdominal region of the mice. Three-dimensional ultrasound scans were performed before and after therapy for quantification. The residual volume of the thrombi was 20% in animals post sonothrombolysis versus 52% without therapy ( p = 0.012 < 0.05 ), indicating a significant reduction in DVT volume. Histological analysis of tissue sections confirmed a reduction in DVT volume post-therapy. Therefore, large microbubbles generated from a microfluidic device show promise in ultrasound-assisted therapy to address concerns related to venous thromboembolism.
Collapse
Affiliation(s)
- Yanjun Xie
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, 22908, USA
| | - Yi Huang
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, 22908, USA
| | - Hugo C S Stevenson
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, 22908, USA
| | - Li Yin
- Department of Surgery, School of Medicine, University of Virginia, 409 Lane Rd MR4, Charlottesville, VA, 22908, USA
- Feinberg School of Medicine, Northwestern University, 300 E. Superior St. Tarry Building, Chicago, IL, 60611, USA
| | - Kaijie Zhang
- Department of Surgery, School of Medicine, University of Virginia, 409 Lane Rd MR4, Charlottesville, VA, 22908, USA
- Feinberg School of Medicine, Northwestern University, 300 E. Superior St. Tarry Building, Chicago, IL, 60611, USA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, 409 Lane Rd MR4, Charlottesville, VA, 22908, USA
| | - William Aaron Marcum
- Department of Surgery, School of Medicine, University of Virginia, 409 Lane Rd MR4, Charlottesville, VA, 22908, USA
| | - Campbell Johnston
- Department of Surgery, School of Medicine, University of Virginia, 409 Lane Rd MR4, Charlottesville, VA, 22908, USA
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, 409 Lane Rd MR4, Charlottesville, VA, 22908, USA
| | - Eric William Kent
- Department of Surgery, School of Medicine, University of Virginia, 409 Lane Rd MR4, Charlottesville, VA, 22908, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, 409 Lane Rd MR4, Charlottesville, VA, 22908, USA
- Feinberg School of Medicine, Northwestern University, 300 E. Superior St. Tarry Building, Chicago, IL, 60611, USA
| | - John A Hossack
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, 22908, USA.
| |
Collapse
|
3
|
Shi Y, Yuan Y, Gu J. Re: "Treatment Strategies for Proximal Deep Vein Thrombosis: A Network Meta-analysis of Randomised Controlled Trials". Eur J Vasc Endovasc Surg 2024; 68:274. [PMID: 38759944 DOI: 10.1016/j.ejvs.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 05/19/2024]
Affiliation(s)
- Yadong Shi
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Yuan
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianping Gu
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Wang Z, Jiang N, Jiang Z, Deng Q, Zhou Q, Hu B. Beyond silence: evolving ultrasound strategies in the battle against cardiovascular thrombotic challenges. J Thromb Thrombolysis 2024; 57:1040-1050. [PMID: 38689069 DOI: 10.1007/s11239-024-02989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular thrombotic events have long been a perplexing factor in clinical settings, influencing patient prognoses significantly. Ultrasound-mediated acoustic therapy, an innovative thrombolytic treatment method known for its high efficiency, non-invasiveness, safety, and convenience, has demonstrated promising potential for clinical applications and has gradually become a focal point in cardiovascular thrombotic disease research. The current challenge lies in the technical complexities of preparing ultrasound-responsive carriers with thrombus-targeting capabilities and high thrombolytic efficiency. Additionally, optimizing the corresponding acoustic treatment mode is crucial to markedly enhance the thrombolytic effectiveness of ultrasound-mediated acoustic therapy. In light of the current status, this article provides a comprehensive review of the research progress in innovative ultrasound-mediated acoustic therapy for cardiovascular thrombotic diseases. It explores the impact of technical methods, therapeutic mechanisms, and influencing factors on the thrombolytic efficiency and clinical potential of ultrasound-mediated acoustic therapy. The review places particular emphasis on identifying solutions and key considerations in addressing the challenges associated with this cutting-edge therapeutic approach.
Collapse
Affiliation(s)
- Zhiwen Wang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Nan Jiang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Zhixin Jiang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Qing Deng
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Bo Hu
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Li Y, Li Y, Chen H. The effect of ultrasound-assisted thrombolysis studied in blood-on-a-chip. Artif Organs 2024; 48:734-742. [PMID: 38380722 DOI: 10.1111/aor.14731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Thromboembolism, which leads to pulmonary embolism and ischemic stroke, remains one of the main causes of death. Ultrasound-assisted thrombolysis (UAT) is an effective thrombolytic method. However, further studies are required to elucidate the mechanism of ultrasound on arterial and venous thrombi. METHODS We employed the blood-on-a-chip technology to simulate thrombus formation in coronary stenosis and deep vein valves. Subsequently, UAT was conducted on the chip to assess the impact of ultrasound on thrombolysis under varying flow conditions. Real-time fluorescence was used to assess thrombolysis and drug penetration. Finally, scanning electron microscopy and immunofluorescence were used to determine the effect of ultrasound on fibrinolysis. RESULTS The study revealed that UAT enhanced the thrombolytic rate by 40% in the coronary stenosis chip and by 10% in the deep venous valves chip. This enhancement is attributed to the disruption of crosslinked fibrin fibers by ultrasound, leading to increased urokinase diffusion within the thrombus and accumulation of plasminogen on the fibrinogen α chain. Moreover, the acceleration of the dissolution rate of thrombi in the venous valve chip by ultrasound was not as significant as that in the coronary stenosis chip. CONCLUSION These findings highlight the differential impact of ultrasound on thrombolysis under various flow conditions and emphasize the valuable role of the blood-on-a-chip technology in exploring thrombolysis mechanisms.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| | - Yongjian Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| | - Haosheng Chen
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Ward RE, Martinez-Correa S, Tierradentro-García LO, Hwang M, Sehgal CM. Sonothrombolysis: State-of-the-Art and Potential Applications in Children. CHILDREN (BASEL, SWITZERLAND) 2023; 11:57. [PMID: 38255371 PMCID: PMC10814591 DOI: 10.3390/children11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
In recent years, advances in ultrasound therapeutics have been implemented into treatment algorithms for the adult population; however, the use of therapeutic ultrasound in the pediatric population still needs to be further elucidated. In order to better characterize the utilization and practicality of sonothrombolysis in the juvenile population, the authors conducted a literature review of current pediatric research in therapeutic ultrasound. The PubMed database was used to search for all clinical and preclinical studies detailing the use and applications of sonothrombolysis, with a focus on the pediatric population. As illustrated by various review articles, case studies, and original research, sonothrombolysis demonstrates efficacy and safety in clot dissolution in vitro and in animal studies, particularly when combined with microbubbles, with potential applications in conditions such as deep venous thrombosis, peripheral vascular disease, ischemic stroke, myocardial infarction, and pulmonary embolism. Although there is limited literature on the use of therapeutic ultrasound in children, mainly due to the lower prevalence of thrombotic events, sonothrombolysis shows potential as a noninvasive thrombolytic treatment. However, more pediatric sonothrombolysis research needs to be conducted to quantify the safety and ethical considerations specific to this vulnerable population.
Collapse
Affiliation(s)
- Rebecca E. Ward
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Santiago Martinez-Correa
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
| | - Luis Octavio Tierradentro-García
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chandra M. Sehgal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Rahmani G, O'Sullivan GJ. Acute and chronic venous occlusion. Br J Radiol 2023; 96:20230242. [PMID: 37750946 PMCID: PMC10607425 DOI: 10.1259/bjr.20230242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/04/2023] [Accepted: 08/04/2023] [Indexed: 09/27/2023] Open
Abstract
This review article provides an overview of acute and chronic venous occlusion, a condition that can cause significant morbidity and mortality if not diagnosed and treated promptly. The article begins with an introduction to the anatomy of the venous system, followed by a discussion of the causes and clinical features of venous occlusion. The diagnostic tools available for the assessment of venous occlusion, including imaging modalities such as ultrasound, CT, and MRI, are then discussed, along with their respective advantages and limitations. The article also covers the treatment options for acute and chronic venous occlusion, including anticoagulant therapy and endovascular interventions. This review aims to provide radiologists with an updated understanding of the pathophysiology, diagnosis, and management of acute and chronic venous occlusion.
Collapse
Affiliation(s)
- George Rahmani
- Department of Interventional Radiology, Galway University Hospitals, Galway, Ireland
| | - Gerard J O'Sullivan
- Department of Interventional Radiology, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
8
|
Kim YC, Vijayaratnam PRS, Blanloeuil P, Taylor RA, Barber TJ. Ultrasonic Traveling Waves for Near-Wall Positioning of Single Microbubbles in a Flowing Channel. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:961-969. [PMID: 36669943 DOI: 10.1016/j.ultrasmedbio.2022.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Although microbubbles are used primarily in the medical industry as ultrasonic contrast agents, they can also be manipulated by acoustic waves for targeted drug delivery, sonothrombolysis and sonoporation. Acoustic waves can also potentially remove microbubbles from tubing systems (e.g., in hemodialysis) to prevent the negative effects associated with circulating microbubbles. A deeper understanding of the interactions between the acoustic radiation force, the microbubble and the channel wall could greatly benefit these applications. In this study, single air-filled microbubbles were injected into a flowing (polydimethylsiloxane) channel and monitored by a high-speed camera while passing through a pulsed ultrasonic wave zone (0.5 MHz). This study compared various bubble sizes, flow rates and acoustic pressure amplitudes to better understand the three physical regimes observed: free bubble translation (away from the wall); on-wall translation; and bubble-wall attachment. Comparison with a theoretical model revealed that the acoustic radiation force needs to exceed the combined repulsive forces (shear lift, wall lubrication and repulsive Van der Waal forces) for the dead state of bubble-wall attachment. The bubble dynamics revealed through this investigation provide an opportunity for efficient positioning of microbubbles in a channel flow, for either in vivo manipulation or removal in biological applications.
Collapse
Affiliation(s)
- Yeo Cheon Kim
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, Australia.
| | - Pujith R S Vijayaratnam
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Philippe Blanloeuil
- School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Queensland, Australia
| | - Robert A Taylor
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Tracie J Barber
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Rayes A, Zhang J, Lu G, Qian X, Schroff ST, Ryu R, Jiang X, Zhou Q. Estimating Thrombus Elasticity by Shear Wave Elastography to Evaluate Ultrasound Thrombolysis for Thrombus With Different Stiffness. IEEE Trans Biomed Eng 2023; 70:135-143. [PMID: 35759590 PMCID: PMC10370280 DOI: 10.1109/tbme.2022.3186586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE There is uncertainty about deep vein thrombosis standard treatment as thrombus stiffness alters each case. Here, we investigated thrombus' stiffness of different compositions and ages using shear wave elastography (SWE). We then studied the effectiveness of ultrasound-thrombolysis on different thrombus compositions. METHODS Shear waves generated through mechanical shaker and traveled along thrombus of different hematocrit (HCT) levels, whereas 18-MHz ultrasound array used to detect wave propagation. Thrombus' stiffness was identified by the shear wave speed (SWS). In thrombolysis, a 3.2 MHz focused transducer was applied to different thrombus compositions using different powers. The thrombolysis rate was defined as the percentage of weight loss. RESULTS The estimated average SWS of 20%, 40%, and 60% HCT thrombus were 0.75 m/s, 0.44 m/s, and 0.32 m/s, respectively. For Thrombolysis, the percentage weight loss at 8 MPa Negative pressure for the same HCT groups were 23.1%, 35.29%, and 39.66% respectively. CONCLUSION SWS is inversely related to HCT level and positively related to thrombus age. High HCT thrombus had higher weight loss compared to low HCT. However, the difference between 20% and 40% HCT was more significant than between 40% and 60% HCT in both studies. Our results suggest that thrombus with higher SWS require more power to achieve the same thrombolysis rate as thrombus with lower SWS. SIGNIFICANCE Characterizing thrombus elastic property undergoing thrombolysis enables evaluation of ultrasound efficacy for fractionating thrombus and reveals the appropriate ultrasound parameters selection to achieve a certain thrombolysis rate in the case of a specific thrombus stiffness.
Collapse
Affiliation(s)
- Adnan Rayes
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stuart T. Schroff
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Robert Ryu
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Xiaoning Jiang
- department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
10
|
Catheter directed thrombolysis for deep vein thrombosis in 2022: Rationale, evidence base and future directions. Int J Cardiol 2022; 362:168-173. [DOI: 10.1016/j.ijcard.2022.04.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022]
|
11
|
Nadjiri J, Kierse A, Sendlbeck M, Janssen A, Geith T, Waggershauser T, Paprottka PM. Efficacy of ultrasound assisted catheter-directed thrombolysis compared to catheter-directed thrombolysis in vitro. Acta Radiol 2021; 64:119-124. [PMID: 34866428 DOI: 10.1177/02841851211061440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Catheter-directed thrombolysis (CDT) is an effective and safe endovascular method used in critical limb ischemia and many other thromboembolic events. Ultrasound-assisted catheter-directed thrombolysis (US-CDT) is an emerging technique considered to accelerate thrombolysis and therefore is supposed to improve outcome. PURPOSE To evaluate the efficacy of US-CDT in comparison to standard CDT in vitro. MATERIAL AND METHODS A total of 69 sets of human venous blood were evaluated, each comprising a tube just treated with CDT, a tube treated with US-CDT, and a control tube. All tubes were kept under physiological conditions. Except for the controls, in all tubes 5 mg of tissue-type plasminogen activator was administered over the predetermined treatment interval. Thrombus mass was weighted at the end of the lysis intervals at 6 h or 24 h, respectively. RESULTS CDT led to a mean thrombus reduction of 32% and ultrasound-assisted lysis led to a mean thrombus reduction of 41% (P < 0.001 for both). Thrombus reduction was significantly higher after US-CDT compared to CDT (P = 0.001). The better efficacy of US-CDT was mostly already apparent at early phases during thrombolysis and did further mildly increase over time (r = 0.24; P = 0.047). CONCLUSION In vitro US-CDT is significantly superior to standard CDT; this effect is apparent at an early timepoint of lysis and slightly further increases over time.
Collapse
Affiliation(s)
- Jonathan Nadjiri
- Department of Interventional Radiology, Klinikum rechts der Isar of the Technical University of Munich, Munich, Germany
| | - Anna Kierse
- Department of Interventional Radiology, Klinikum rechts der Isar of the Technical University of Munich, Munich, Germany
| | - Melanie Sendlbeck
- Department of Interventional Radiology, Klinikum rechts der Isar of the Technical University of Munich, Munich, Germany
| | - Agnes Janssen
- Department of Interventional Radiology, Klinikum rechts der Isar of the Technical University of Munich, Munich, Germany
| | - Tobias Geith
- Department of Interventional Radiology, Klinikum rechts der Isar of the Technical University of Munich, Munich, Germany
| | - Tobias Waggershauser
- Department of Interventional Radiology, Klinikum rechts der Isar of the Technical University of Munich, Munich, Germany
| | - Philipp M Paprottka
- Department of Interventional Radiology, Klinikum rechts der Isar of the Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Razavi C, Khalsa B, Openshaw L, Razavi MK. Single-Session Treatment of Patients with Symptomatic Iliocaval and Iliofemoral Deep Vein Thrombosis: Technical Results of a Prospective Pilot Study. J Vasc Interv Radiol 2021; 33:183-188. [PMID: 34700012 DOI: 10.1016/j.jvir.2021.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To investigate the short-term results of single-session treatment of iliocaval and iliofemoral DVT using a single thrombectomy device. MATERIALS AND METHODS This prospective pilot study analyzed patients with acute iliocaval or iliofemoral DVT treated in a single session using the JETi thrombectomy system. All analyses were performed on an intention-to-treat basis. The cohort consisted of 53 limbs in 47 patients (27 women), with a mean age of 57 years (range, 16-88 years). The primary safety and efficacy endpoints were freedom from major adverse events (MAEs) and reestablishment of unobstructed flow in a single session, respectively. RESULTS The mean duration of symptoms was 8.5 days ± SD 9.2, with 10 patients (11 limbs, 21.3%) presenting with a symptom duration of >14 days. Twelve (25.5%) patients had thrombosis of the inferior vena cava and the iliofemoral segments. During the index procedure, unobstructed flow was reestablished in 47 of 53 (88.6%) limbs in 41 of 47 (87.2%) patients (primary endpoint) with no MAEs through 30 days. Overall, unobstructed flow was restored in 50 of 53 (94.3%) limbs and in 44 of 47 (93.6%) patients. CONCLUSIONS Successful single-session treatment of patients with acute iliocaval and iliofemoral DVT is feasible with a high rate of efficacy and a low rate of adverse events. Such patients may be treated on an outpatient basis.
Collapse
Affiliation(s)
- Crystal Razavi
- University of Arizona School of Medicine, Tucson, Arizona
| | | | | | - Mahmood K Razavi
- Center for Clinical Trials, St. Joseph Heart & Vascular Center, Orange, California.
| |
Collapse
|
13
|
Langer S, Regeniter P. Interventionelle Therapie der akuten iliofemoralen Thrombose. PHLEBOLOGIE 2021. [DOI: 10.1055/a-1424-4820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ZusammenfassungDer Goldstandard in der Behandlung der Phlebothrombose ist die konservative Therapie mittels Antikoagulation und Kompression. Bei akuten proximalen iliofemoralen Thrombosen mit Beteiligung der Beckenvene muss jedoch hierbei mit einer Inzidenz für das Entstehen eines postthrombotischen Syndroms im Langzeitverlauf von bis zu 70 % gerechnet werden. Zur Prävention eines solchen Folgeschadens rückt neben der selten durchgeführten operativen venösen Thrombektomie in den letzten Jahren zunehmend die interventionelle rekanalisierende Therapie in den Fokus der Behandlungsstrategie. In dieser Übersicht werden die verschiedenen Techniken und aktuellen Entwicklungen dieser Therapie dargestellt und einer kritischen Wertung vor dem Hintergrund der bestehenden Evidenz unterzogen.
Collapse
|
14
|
Fletcher SE, Jasuja S, Lawler LP, Moriarty JM. Catheter-directed thrombolysis and mechanical intervention in deep venous thrombosis: what is the status after the ATTRACT trial? Postgrad Med 2021; 133:42-50. [PMID: 33863270 DOI: 10.1080/00325481.2021.1919435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Deep venous thrombosis (DVT) is a major cause of acute and chronic morbidity, mortality, and increased healthcare costs. Endovascular methods for thrombus removal and reestablishing venous patency are increasing in both scope and usage. The most commonly used method for endovascular thrombectomy is catheter-directed thrombolysis (CDT). Several studies have shown promise for CDT in alleviating acute symptomatology in acute lower extremity DVT as well as mitigating potential long-term consequences of DVT, such as post-thrombotic syndrome (PTS). The Acute Venous Thrombosis: Thrombus Removal with Adjunctive Catheter-Directed Thrombolysis (ATTRACT) trial is the largest and most comprehensive randomized-controlled trial to date evaluating CDT compared to anticoagulation alone for the treatment of acute symptomatic proximal lower extremity DVT. This review discusses the current status of CDT and adjunctive endovascular interventions for DVT, particularly in the context of the ATTRACT trial.
Collapse
Affiliation(s)
- Savannah E Fletcher
- Division of Interventional Radiology, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Sonia Jasuja
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Leo P Lawler
- Division of Interventional Radiology, Department of Radiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - John M Moriarty
- Division of Interventional Radiology, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
15
|
Knippa S, Vernon S. Evidence-Based Management of a Patient With an EKOS Catheter. Crit Care Nurse 2021; 41:78-80. [PMID: 33791758 DOI: 10.4037/ccn2021182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Sara Knippa
- Sara Knippa is a clinical nurse specialist and clinical nurse educator in the cardiac intensive care unit, University of Colorado Hospital, UCHealth, Aurora, Colorado
| | - Shannon Vernon
- Shannon Vernon is a clinical nurse educator in the surgical trauma intensive care unit at University of Colorado Hospital, and in the intensive care unit at Highlands Ranch Hospital, UCHealth, Highlands Ranch, Colorado
| |
Collapse
|
16
|
Lafond M, Salido NG, Haworth KJ, Hannah AS, Macke GP, Genstler C, Holland CK. Cavitation Emissions Nucleated by Definity Infused through an EkoSonic Catheter in a Flow Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:693-709. [PMID: 33349516 PMCID: PMC11537209 DOI: 10.1016/j.ultrasmedbio.2020.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
The EkoSonic endovascular system has been cleared by the U.S. Food and Drug Administration for the controlled and selective infusion of physician specified fluids, including thrombolytics, into the peripheral vasculature and the pulmonary arteries. The objective of this study was to explore whether this catheter technology could sustain cavitation nucleated by infused Definity, to support subsequent studies of ultrasound-mediated drug delivery to diseased arteries. The concentration and attenuation spectroscopy of Definity were assayed before and after infusion at 0.3, 2.0 and 4.0 mL/min through the EkoSonic catheter. PCI was used to map and quantify stable and inertial cavitation as a function of Definity concentration in a flow phantom mimicking the porcine femoral artery. The 2.0 mL/min infusion rate yielded the highest surviving Definity concentration and acoustic attenuation. Cavitation was sustained throughout each 15 ms ultrasound pulse, as well as throughout the 3 min infusion. These results demonstrate a potential pathway to use cavitation nucleation to promote drug delivery with the EkoSonic endovascular system.
Collapse
Affiliation(s)
- Maxime Lafond
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Nuria G Salido
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Gregory P Macke
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
17
|
Abstract
Stenosis of the iliac veins is common in patients with chronic venous insufficiency. The article describes the methods for the diagnosis and treatment of iliac vein stenosis. The causes of iliac vein stenosis include extravasal compression or the consequences of ileofemoral thrombosis. Stenosis of the iliac veins exists in 1/4 of the entire adult population, but clinical manifestations do not occur in all patients. Stenosis of the iliac veins should be considered in case of an unknown edema, more often in the left lower extremity, since venous duplex ultrasound of lower extremities is not sensitive and specific enough when examining the veins above the inguinal ligament. The most accurate diagnostic method is intravascular ultrasound (IVUS) but the appeared computed tomography angiography (CTA) and magnetic resonance angiography (MRA) with high-quality images have become a good replacement for IVUS. The main method of treatment of iliac vein stenosis, besides stenting, isindispensable drug therapy consisting of antithrombotic and phlebotonic drugs.
Collapse
|
18
|
Goel L, Wu H, Kim H, Zhang B, Kim J, Dayton PA, Xu Z, Jiang X. Examining the Influence of Low-Dose Tissue Plasminogen Activator on Microbubble-Mediated Forward-Viewing Intravascular Sonothrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1698-1706. [PMID: 32389332 PMCID: PMC7293952 DOI: 10.1016/j.ultrasmedbio.2020.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/01/2020] [Accepted: 03/11/2020] [Indexed: 05/04/2023]
Abstract
Previous work revealed that a forward-viewing intravascular (FVI) transducer can be used for microbubble (MB)-mediated sonothrombolysis and that the clot lysis was dependent on MB concentration. This study examined the effects of combining tissue plasminogen activator (tPA) with MB-mediated FVI sonothrombolysis. In vitro clot lysis and passive cavitation experiments were conducted to study the effect of low-dose tPA in FVI sonothrombolysis with varying MB concentrations. Enhanced FVI sonothrombolysis was observed in cases in which ultrasound (US) was combined with tPA or MBs compared with control, tPA alone or US alone. The lysis rate of US + tPA + MBs was improved by up to 130%, 31% and 8% for MB concentrations of 106, 107 and 108 MBs/mL, respectively, compared with MBs + US alone. Changes in stable and inertial cavitation doses were observed, corresponding to changes in clot lysis in MB-mediated FVI sonothrombolysis with and without tPA.
Collapse
Affiliation(s)
- Leela Goel
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Howuk Kim
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Jinwook Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
19
|
Kooiman K, Roovers S, Langeveld SAG, Kleven RT, Dewitte H, O'Reilly MA, Escoffre JM, Bouakaz A, Verweij MD, Hynynen K, Lentacker I, Stride E, Holland CK. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1296-1325. [PMID: 32165014 PMCID: PMC7189181 DOI: 10.1016/j.ultrasmedbio.2020.01.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 05/03/2023]
Abstract
Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood-brain and blood-spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.
Collapse
Affiliation(s)
- Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Silke Roovers
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Medical School of the Vrije Universiteit Brussel, Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
20
|
Goel L, Jiang X. Advances in Sonothrombolysis Techniques Using Piezoelectric Transducers. SENSORS 2020; 20:s20051288. [PMID: 32120902 PMCID: PMC7085655 DOI: 10.3390/s20051288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
One of the great advancements in the applications of piezoelectric materials is the application for therapeutic medical ultrasound for sonothrombolysis. Sonothrombolysis is a promising ultrasound based technique to treat blood clots compared to conventional thrombolytic treatments or mechanical thrombectomy. Recent clinical trials using transcranial Doppler ultrasound, microbubble mediated sonothrombolysis, and catheter directed sonothrombolysis have shown promise. However, these conventional sonothrombolysis techniques still pose clinical safety limitations, preventing their application for standard of care. Recent advances in sonothrombolysis techniques including targeted and drug loaded microbubbles, phase change nanodroplets, high intensity focused ultrasound, histotripsy, and improved intravascular transducers, address some of the limitations of conventional sonothrombolysis treatments. Here, we review the strengths and limitations of these latest pre-clincial advancements for sonothrombolysis and their potential to improve clinical blood clot treatments.
Collapse
Affiliation(s)
- Leela Goel
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA;
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC 27695-7910, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA;
- Correspondence: ; Tel.: +1-919-515-5240
| |
Collapse
|
21
|
Chopra V. Web Exclusive. Annals for Hospitalists Inpatient Notes - How I Treat-Catheter-Related Deep Venous Thrombosis. Ann Intern Med 2019; 170:HO2-HO3. [PMID: 31108542 DOI: 10.7326/m19-1172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Vineet Chopra
- University of Michigan Health System and Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan (V.C.)
| |
Collapse
|
22
|
Radaideh Q, Patel NM, Shammas NW. Iliac vein compression: epidemiology, diagnosis and treatment. Vasc Health Risk Manag 2019; 15:115-122. [PMID: 31190849 PMCID: PMC6512954 DOI: 10.2147/vhrm.s203349] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/29/2019] [Indexed: 11/26/2022] Open
Abstract
Iliac vein compression (LIVC) is a prevalent finding in the general population, but a smaller number of patients are symptomatic. ILVC should be considered in symptomatic patients with unexplained unilateral lower leg swelling. Patients typically complain of one or more of the following symptoms: lower leg pain, heaviness, venous claudication, swelling, hyperpigmentation and ulceration. ILVC can be thrombotic, combined with acute or chronic DVT, or non-thrombotic. ILVC is best diagnosed with intravascular ultrasound (IVUS), but computed tomography angiography (CTA) and magnetic resonance angiography (MRA) have emerged as valid screening tests. Venography underestimates the severity of ILVC but may provide insights into the anatomy and the presence of collaterals. Based on current available evidence, endovascular therapy with stenting remains the main treatment strategy for ILVC. Dedicated nitinol venous stents are currently under review by the Food and Drug Administration for potential approval in the United States. These stents have been released outside the US. There is no consensus to the optimal anticoagulation regimen post-ILVC stenting. Oral anticoagulants, however, remain a preferred therapy in patients with history of thrombotic ILVC. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/InSwn2AebNY
Collapse
Affiliation(s)
- Qais Radaideh
- Midwest Cardiovascular Research Foundation, Davenport, IA, USA
| | - Neel M Patel
- Midwest Cardiovascular Research Foundation, Davenport, IA, USA
| | | |
Collapse
|
23
|
Wang D, Bao F, Li Q, Teng Y, Li J. Semiautomatic intermittent pneumatic compression device applied to deep vein thrombosis in major orthopedic surgery. Biomed Eng Online 2018; 17:78. [PMID: 29903003 PMCID: PMC6002995 DOI: 10.1186/s12938-018-0513-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/05/2018] [Indexed: 12/02/2022] Open
Abstract
Objective To investigate the effect of additional semiautomatic intermittent pneumatic compression device (IPCD) in the prevention of deep vein thrombosis (DVT) of lower extremity in these patients undergoing major orthopedic surgery, when compared with the conventional graduated compression stockings alone. Methods The data of 112 patients undergoing major orthopedic surgery were retrospectively analyzed. 51 patients who ever received IPCD and graduated compression stockings during major orthopedic surgery were taken as the experimental group, and 61 patients who only received the conventional graduated compression stockings during surgery were taken as the observation group. The Doppler sonography was utilized to detect the presence of DVT and pulmonary embolism pre- and postoperatively. Besides, the mean and peak velocity of blood flow in femoral vein were recorded before and after surgery. And then, the comparisons between the two groups were made, respectively. Results When compared with the conventional graduated compression stockings alone, the intraoperative application of IPCD and stockings contributed the significant reduction of DVT (3.92%, 2/51 versus 9.84%, 6/61, X2 = 5.632, P = 0.034). In terms of the mean and peak velocity of blood flow in femoral vein, the postoperative difference was higher in the observation group than those in the control group (149.56 ± 26.35 versus 130.15 ± 22.56 mm/s, P < 0.05). With respect to perioperative blood loss, the difference between the two groups was statistically significant (800.5 ± 320.7 versus 950.1 ± 305.9 ml, P = 0.031). Conclusions Intraoperative application of IPCD could promote blood circulation of lower limbs, and significantly decrease the incidence of potentially fatal DVT in patients undergoing major orthopedic surgery, when compared with the conventional graduated compression stockings.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, 11000, Liaoning, China
| | - Fuqin Bao
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, 11000, Liaoning, China
| | - Qiang Li
- Department of Orthopedic Surgery, Fuxin Central Hospital, Fuxin, 12300, Liaoning, China
| | - Yugang Teng
- Department of Orthopedic Surgery, Fuxin Central Hospital, Fuxin, 12300, Liaoning, China
| | - Jianjun Li
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, 11000, Liaoning, China.
| |
Collapse
|