3
|
Wang M, Zhang H, Chen W, Lu T, Yang H, Wang X, Lu M, Qi Z, Li D. Graphene oxide nanoparticles and hematite colloids behave oppositely in their co-transport in saturated porous media. CHEMOSPHERE 2021; 265:129081. [PMID: 33288283 DOI: 10.1016/j.chemosphere.2020.129081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Since iron oxide minerals are ubiquitous in natural environments, the release of graphene oxide (GO) into environmental ecosystems can potentially interact with iron oxide particles and thus alter their surface properties, resulting in the change of their transport behaviors in subsurface systems. Column experiments were performed in this study to investigate the co-transport of GO nanoparticles and hematite colloids (a model representative of iron oxides) in saturated sand. The results demonstrated that the presence of hematite inhibited GO transport in quartz sand columns due to the formation of less negatively charged GO-hematite heteroaggregates and additional deposition sites provided by the adsorbed hematite on sand surfaces. Contrarily, GO co-present in suspensions significantly enhanced the transport of hematite colloids through different mechanisms such as the increase of electrostatic repulsion, decreased physical straining, GO-facilitated transport of hematite (i.e., highly mobile GO nanoparticles served as a mobile carrier for hematite). We also found that the co-transport behaviors of GO and hematite depended on solution chemistry (e.g., pH, ionic strength, and divalent cation (i.e., Ca2+)), which affected the electrostatic interaction as well as heteroaggregation behaviors between GO nanoparticles and hematite colloids. The findings provide an insight into the potential fate of carbon nanomaterials affected by mineral colloids existing in natural waters and soils.
Collapse
Affiliation(s)
- Mengjie Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Haojing Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Taotao Lu
- Department of Hydrology, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Huihui Yang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Xinhai Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Minghua Lu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| | - Deliang Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| |
Collapse
|