1
|
Paz-López CV, Fereidooni M, Praserthdam P, Praserthdam S, Farfán N, Marquez V. Comprehensive analysis (aerobic/anaerobic, molecular recognitions, band-position and degradation-mechanism) of undoped and Co-doped anatase-brookite - An experimental/theoretical evaluation of the less-studied TiO 2 mixed phase. ENVIRONMENTAL RESEARCH 2023; 229:115968. [PMID: 37121350 DOI: 10.1016/j.envres.2023.115968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
The molecular recognition (MRec) effect is required in the initial phase of organic reactions. The second stage involves molecular-orientations and molecular-orbitals energy-levels (MOrbE). The components of a reaction must be compatible in terms MRec and MOrbE. Therefore, the comprehension of photocatalytic systems applied in wastewater treatment will be improved if the MRec effect is also considered as an important factor. The purpose of this study is to provide a comprehensive understanding of the less studied anatase-brookite mixed-phase (doped and undoped). Anatase/brookite photocatalytic systems were evaluated utilizing experimental/theoretical approaches in H2O (aerobic/anaerobic) environments with Vis-light and the organic pollutant (OrPo) methyl orange (MO). The compatibility of MRec and MOrbE of anatase-brookite mixed-phase (with the different reactive system components) confirmed this is the optimal combination for photocatalytic application. Using the sol-gel method, AM-TiO2NP (amorphous), TiO2NP (crystalline), and TiO2NP-Co0.1 at% (crystalline Co-doped) anatase-brookite mixed-phase photocatalysts were obtained. The morphology and surface were characterized using XRD, BET, SEM, HR-TEM, FT-IR and XPS. Employing UV-vis DRS and PL, photo-response and electron-hole recombination were studied. LVS and Mott-Schottky plot were employed to determine photo-electrochemical activity. The results of TiO2NP photocatalytic degradation in both aerobic and anaerobic environments are remarkable. The results of molecular dynamics (MD) simulation and Fukui Function (FF) based on density functional theory (DFT) validate the remarkable photocatalytic MO degradation.
Collapse
Affiliation(s)
- C V Paz-López
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - M Fereidooni
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - P Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - S Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - N Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - V Marquez
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Zhu SC, Huang ZB, Hu Q, Xu L. Pressure tuned incommensurability and guest structure transition in compressed scandium from machine learning atomic simulation. Phys Chem Chem Phys 2022; 24:7007-7013. [PMID: 35254347 DOI: 10.1039/d1cp05803g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scandium (Sc) is the lightest non-main-group element and transforms to a host-guest (H-G) incommensurate structure under gigapascal (GPa) pressures. While the host structure is stable over a wide pressure range, the guest structure may exist in multiple forms, featuring different incommensurate ratios, and mixing up to generate long-range "disordered" guest structures. Here, we employed the recently developed global neural network (g-NN) potential and the stochastic surface walking (SSW) global optimization algorithm to explore the global potential energy surface of Sc under various pressures. We probe the global minima structure in a system made of hundreds of atoms and revealed that the solid-phase transition between Sc-I and H-G Sc-II phases is fully reconstructive in nature. Above 62.5 GPa, the pressure will further destabilize the face-centered tetragonal (fct, Sc-IIa) guest structure to a body-centered tetragonal phase (bct, Sc-IIb), while sustaining the host structure. The structural transition mechanism of this work will shed light on the nature of the complex H-G structural modifications in compressed metals.
Collapse
Affiliation(s)
- Sheng-Cai Zhu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Zhen-Bo Huang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, P. R. China.,CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, P. R. China
| | - Liang Xu
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
| |
Collapse
|
3
|
Chen F, Ma T, Zhang T, Zhang Y, Huang H. Atomic-Level Charge Separation Strategies in Semiconductor-Based Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005256. [PMID: 33501728 DOI: 10.1002/adma.202005256] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Semiconductor-based photocatalysis as a productive technology furnishes a prospective solution to environmental and renewable energy issues, but its efficiency greatly relies on the effective bulk and surface separation of photoexcited charge carriers. Exploitation of atomic-level strategies allows in-depth understanding on the related mechanisms and enables bottom-up precise design of photocatalysts, significantly enhancing photocatalytic activity. Herein, the advances on atomic-level charge separation strategies toward developing robust photocatalysts are highlighted, elucidating the fundamentals of charge separation and transfer processes and advanced probing techniques. The atomic-level bulk charge separation strategies, embodied by regulation of charge movement pathway and migration dynamic, boil down to shortening the charge diffusion distance to the atomic-scale, establishing atomic-level charge transfer channels, and enhancing the charge separation driving force. Meanwhile, regulating the in-plane surface structure and spatial surface structure are summarized as atomic-level surface charge separation strategies. Moreover, collaborative strategies for simultaneous manipulation of bulk and surface photocharges are also introduced. Finally, the existing challenges and future prospects for fabrication of state-of-the-art photocatalysts are discussed on the basis of a thorough comprehension of atomic-level charge separation strategies.
Collapse
Affiliation(s)
- Fang Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Tianyi Ma
- Discipline of Chemistry, School of Environmental & Life Sciences, The University of Newcastle (UON), Callaghan, NSW, 2308, Australia
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
4
|
De DS, Behara DK, Saha S, Kumar A, Subramaniam A, Sivakumar S, Pala RGS. Design of iso-material heterostructures of TiO 2via seed mediated growth and arrested phase transitions. Phys Chem Chem Phys 2020; 22:25366-25379. [PMID: 33140780 DOI: 10.1039/d0cp01300e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stabilization of different morphologies of iso-material native/non-native heterostructures is important for electron-hole separation in the context of photo-electrochemical and opto-electronic devices. In this regard, we explore the stabilities of different morphologies of rutile ("native", ground state phase) and anatase ("non-native" phase) TiO2 heterostructures through (1) seed-mediated growth and (2) a thermally induced arrested phase transition synthesis protocol. Furthermore, the experimental results are analyzed through a combination of Density Functional Tight Binding (DFTB) and Finite Element Model (FEM) methods. During the seed-mediated growth, anatase is grown over a polydispersed and polycrystalline rutile core through thermal treatment yielding core-shell, Janus and yolk-shell iso-material heterostructures as observed from HRTEM. The arrested phase transition of anatase to rutile at different annealing temperatures yields rutile crystals in the subsurface region of the anatase and rutile/core-thin anatase/shell heterostructures but does not yield a Janus structure. Small particles that can be modeled via DFTB computations suggest that: (1) a heterostructure of the rutile/core-anatase/shell is energetically more stable than the anatase/core-rutile/shell or any other Janus configuration, (2) the off-centered rutile/core-anatase shell is more favorable to the mid-centered rutile/core-anatase shell and (3) Janus heterostructures can be stabilized when the mass ratio of the rutile seed to anatase overgrowth is high. FEM simulations, performed to evaluate the importance of stress relaxation in bicrystalline materials without defects, suggest that Janus structures can be stabilized in larger particles. The present studies add to the heuristics available for synthesizing iso-material heterostructures.
Collapse
Affiliation(s)
- Deb Sankar De
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India.
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhou X, Dong H. A Theoretical Perspective on Charge Separation and Transfer in Metal Oxide Photocatalysts for Water Splitting. ChemCatChem 2019. [DOI: 10.1002/cctc.201900567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xin Zhou
- College of Environment and Chemical EngineeringDalian University No. 10 Xuefu Street Dalian Economic Technological Development Zone Dalian 116622, Liaoning P.R. China
| | - Hao Dong
- School of Chemistry and Chemical EngineeringLiaoning Normal University No. 850 Huanghe Road Shahekou District Dalian 116029, Liaoning P.R. China
| |
Collapse
|
6
|
Zhu SC, Liu J, Hu Q, Mao WL, Meng Y, Zhang D, Mao HK, Zhu Q. Structure-Controlled Oxygen Concentration in Fe 2O 3 and FeO 2. Inorg Chem 2019; 58:5476-5482. [PMID: 30556389 DOI: 10.1021/acs.inorgchem.8b02764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solid-solid reaction, particularly in the Fe-O binary system, has been extensively studied in the past decades because of its various applications in chemistry and materials and earth sciences. The recently synthesized pyrite-FeO2 at high pressure suggested a novel oxygen-rich stoichiometry that extends the achievable O-Fe ratio in iron oxides by 33%. Although FeO2 was synthesized from Fe2O3 and O2, the underlying solid reaction mechanism remains unclear. Herein, combining in situ X-ray diffraction experiments and first-principles calculations, we identified that two competing phase transitions starting from Fe2O3: (1) without O2, perovskite-Fe2O3 transits to the post-perovskite structure above 50 GPa; (2) if free oxygen is present, O diffuses into the perovskite-type lattice of Fe2O3 leading to the pyrite-type FeO2 phase. We found the O-O bonds in FeO2 are formed by the insertion of oxygen into the Pv lattice via the external stress and such O-O bonding is only kinetically stable under high pressure. This may provide a general mechanism of adding extra oxygen to previous known O saturated oxides to produce unconventional stoichiometries. Our results also shed light on how O is enriched in mantle minerals under pressure.
Collapse
Affiliation(s)
- Sheng-Cai Zhu
- Department of Physics and Astronomy, High Pressure Science and Engineering Center , University of Nevada , Las Vegas , Nevada 89154 , United States.,Center for High Pressure Science and Technology Advanced Research (HPSTAR) , Shanghai 201203 , P. R. China
| | - Jin Liu
- Department of Geological Sciences , Stanford University , Stanford , California 94305 , United States
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR) , Shanghai 201203 , P. R. China
| | - Wendy L Mao
- Department of Geological Sciences , Stanford University , Stanford , California 94305 , United States
| | - Yue Meng
- High Pressure Collaborative Access Team, X-ray Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Dongzhou Zhang
- Hawai'i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR) , Shanghai 201203 , P. R. China.,Geophysical Laboratory , Carnegie Institution of Washington , Washington, D.C. 20015 , United States
| | - Qiang Zhu
- Department of Physics and Astronomy, High Pressure Science and Engineering Center , University of Nevada , Las Vegas , Nevada 89154 , United States
| |
Collapse
|
7
|
Yin J, Li Y, Lv F, Lu M, Sun K, Wang W, Wang L, Cheng F, Li Y, Xi P, Guo S. Oxygen Vacancies Dominated NiS 2 /CoS 2 Interface Porous Nanowires for Portable Zn-Air Batteries Driven Water Splitting Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1704681. [PMID: 29239518 DOI: 10.1002/adma.201704681] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/13/2017] [Indexed: 05/21/2023]
Abstract
The development of highly active and stable oxygen evolution reaction (OER) electrocatalysts is crucial for improving the efficiency of water splitting and metal-air battery devices. Herein, an efficient strategy is demonstrated for making the oxygen vacancies dominated cobalt-nickel sulfide interface porous nanowires (NiS2 /CoS2 -O NWs) for boosting OER catalysis through in situ electrochemical reaction of NiS2 /CoS2 interface NWs. Because of the abundant oxygen vacancies and interface porous nanowires structure, they can catalyze the OER efficiently with a low overpotential of 235 mV at j = 10 mA cm-2 and remarkable long-term stability in 1.0 m KOH. The home-made rechargeable portable Zn-air batteries by using NiS2 /CoS2 -O NWs as the air-cathode display a very high open-circuit voltage of 1.49 V, which can maintain for more than 30 h. Most importantly, a highly efficient self-driven water splitting device is designed with NiS2 /CoS2 -O NWs as both anode and cathode, powered by two-series-connected NiS2 /CoS2 -O NWs-based portable Zn-air batteries. The present work opens a new way for designing oxygen vacancies dominated interface nanowires as highly efficient multifunctional electrocatalysts for electrochemical reactions and renewable energy devices.
Collapse
Affiliation(s)
- Jie Yin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuxuan Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fan Lv
- Department of Materials Science & Engineering, College of Engineering, Peking University, Beijing, 100871, China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Theory and Technology of Advanced Batteries Materials, College of Engineering, Peking University, Beijing, 100871, China
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ke Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yefei Li
- Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Computational Physical Science (Ministry of Education), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shaojun Guo
- Department of Materials Science & Engineering, College of Engineering, Peking University, Beijing, 100871, China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Theory and Technology of Advanced Batteries Materials, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Bo A, Alarco J, Zhu H, Waclawik ER, Zhan H, Gu Y. Nanojoint Formation between Ceramic Titanate Nanowires and Spot Melting of Metal Nanowires with Electron Beam. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9143-9151. [PMID: 28211998 DOI: 10.1021/acsami.6b16237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Construction of nanoarchitectures requires techniques like joint formation and trimming. For ceramic materials, however, it is extremely difficult to form nanojoints by conventional methods like merging. In this work, we demonstrate that ceramic titanate nanowires (NWs) can be joined by spot melting under electron beam (e-beam) irradiation (EBI). The irradiation fuses the contacted spot of titanate NWs yielding an intact nanojoint. Nanojoints with different morphologies can be produced. The joint structures consist of titanium dioxide (TiO2) rutile, anatase, and titanate phases in the direction away from the e-beam melting spot. The titanate binds to anatase via a crystallographic matching coherent interface (the oxygen atoms at the interface are shared by the two phases) and the anatase solidly binds to the rutile joint. The resulting rutile joint is stable at high temperatures. Additionally, it is demonstrated that the heat production from EBI treated rutile can be utilized to break metal NWs (Ag, Cu, and Ni) apart by spot melting. The required e-beam intensity is considerably mild (75 pA/cm2) which allows visual access and control over the NW melting. Direct melting of Ag and Cu is not applicable under EBI due to their high thermal conductivity even with high current density (500 pA/cm2). Our findings reveal that ceramic nanojoint formation and spot melting at nanoscale are applicable if the properties of nanomaterials are understood and properly utilized.
Collapse
Affiliation(s)
- Arixin Bo
- School of Chemistry, Physics and Mechanical Engineering, and ‡Institute for Future Environments, Queensland University of Technology , Brisbane, QLD 4001, Australia
| | - Jose Alarco
- School of Chemistry, Physics and Mechanical Engineering, and ‡Institute for Future Environments, Queensland University of Technology , Brisbane, QLD 4001, Australia
| | - Huaiyong Zhu
- School of Chemistry, Physics and Mechanical Engineering, and ‡Institute for Future Environments, Queensland University of Technology , Brisbane, QLD 4001, Australia
| | - Eric R Waclawik
- School of Chemistry, Physics and Mechanical Engineering, and ‡Institute for Future Environments, Queensland University of Technology , Brisbane, QLD 4001, Australia
| | - Haifei Zhan
- School of Chemistry, Physics and Mechanical Engineering, and ‡Institute for Future Environments, Queensland University of Technology , Brisbane, QLD 4001, Australia
| | - YuanTong Gu
- School of Chemistry, Physics and Mechanical Engineering, and ‡Institute for Future Environments, Queensland University of Technology , Brisbane, QLD 4001, Australia
| |
Collapse
|
9
|
Zhu SC, Fu L. Fabricating rutile nanopins on an anatase hollow sphere structure with enhanced photoactivity performance. RSC Adv 2017. [DOI: 10.1039/c7ra11910k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
TiO2 is a promising material for the renewable energy and pollution control field.
Collapse
Affiliation(s)
- Sheng-Cai Zhu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR)
- Shanghai 201203
- P. R. China
| | - Ling Fu
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province
- College of Agricultural Engineering
- Nanyang Normal University
- Nanyang 473061
| |
Collapse
|
10
|
Zhu SC, Guan SH, Liu ZP. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition. Phys Chem Chem Phys 2016; 18:18563-74. [PMID: 27344965 DOI: 10.1039/c6cp03673b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the product crystallinity of solid phase transition. The new knowledge on the kinetics of pseudomartensitic transition complements the theory of diffusionless solid phase transition.
Collapse
Affiliation(s)
- Sheng-Cai Zhu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China.
| | | | | |
Collapse
|
11
|
Li YF, Liu ZP. Structure and water oxidation activity of 3dmetal oxides. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2015. [DOI: 10.1002/wcms.1236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ye-Fei Li
- Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Computational Physical Science (Ministry of Education), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry; Fudan University; Shanghai China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Computational Physical Science (Ministry of Education), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry; Fudan University; Shanghai China
| |
Collapse
|
12
|
Zhang XJ, Liu ZP. Variable-Cell Double-Ended Surface Walking Method for Fast Transition State Location of Solid Phase Transitions. J Chem Theory Comput 2015; 11:4885-94. [DOI: 10.1021/acs.jctc.5b00641] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xiao-Jie Zhang
- Collaborative Innovation
Center of Chemistry for Energy Material, Shanghai Key Laboratory of
Molecular Catalysis and Innovative Materials, Key Laboratory of Computational
Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative Innovation
Center of Chemistry for Energy Material, Shanghai Key Laboratory of
Molecular Catalysis and Innovative Materials, Key Laboratory of Computational
Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|