1
|
Zhou T, Zhang H, Shi J. Mechanistic insights and optimization of lignin depolymerization into aromatic monomers using vanadium-modified Dawson-type polyoxometalates. Int J Biol Macromol 2025; 299:139644. [PMID: 39842592 DOI: 10.1016/j.ijbiomac.2025.139644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Lignin, as the largest renewable aromatic resource, has significant opportunities for producing high-value products via catalytic depolymerization. However, its complex structure and stable chemical bonds present challenges to its transformation. This study explores the catalytic depolymerization of lignin to aromatic monomers by means of Dawson-type phosphomolybdovanadate polyoxometalates (POMs), understanding the underlying mechanisms. Furthermore, vanadium modification is employed to adjust the catalyst's oxidative and acidic properties, demonstrating that the vanadium content in Dawson-type POMs greatly influences monomer yield. The highest yield is achieved with H8P2Mo16V2O62 (V2). Optimal conditions include a reaction temperature of 150 °C, 4 h, an oxygen pressure of 1 MPa, a methanol-to-water ratio of 8:2, and a mass ratio of the catalyst to the wood powder being 1:1, which leads to a total yield of aromatic monomers at 24 %. POMs with high REDOX potential selectively oxidizes benzyl hydroxyl groups in lignin to benzyl carbonyl groups under the combined action of acidity and oxidation of polyacids. This weakens the βO4 bond and promotes CO bond cleavage. This approach, utilizing the tunable oxidative acidity of polyoxometalates to degrade lignin and produce various aromatic monomers, shows promising potential for lignin valorization and advancing a bio-economy based on lignocellulosic resources.
Collapse
Affiliation(s)
- Tingting Zhou
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Hailin Zhang
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China
| | - Junyou Shi
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China.
| |
Collapse
|
2
|
Seidi F, Liu Y, Huang Y, Xiao H, Crespy D. Chemistry of lignin and condensed tannins as aromatic biopolymers. Chem Soc Rev 2025; 54:3140-3232. [PMID: 39976198 DOI: 10.1039/d4cs00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aromatic biopolymers are the second largest group of biopolymers after polysaccharides. Depolymerization of aromatic biopolymers, as cheap and renewable substitutes for fossil-based resources, has been used in the preparation of biofuels, and a range of aromatic and aliphatic small molecules. Additionally, these polymers exhibit a robust UV-shielding function due to the high content of aromatic groups. Meanwhile, the abundance of phenolic groups in their structures gives these compounds outstanding antioxidant capabilities, making them well-suited for a diverse array of anti-UV and medical applications. Nevertheless, these biopolymers possess inherent drawbacks in their pristine states, such as rigid structure, low solubility, and lack of desired functionalities, which hinder their complete exploitation across diverse sectors. Thus, the modification and functionalization of aromatic biopolymers are essential to provide them with specific functionalities and features needed for particular applications. Aromatic biopolymers include lignins, tannins, melanins, and humic acids. The objective of this review is to offer a thorough reference for assessing the chemistry and functionalization of lignins and condensed tannins. Lignins represent the largest and most prominent category of aromatic biopolymers, typically distinguishable as either softwood-derived or hardwood-derived lignins. Besides, condensed tannins are the most investigated group of the tannin family. The electron-rich aromatic rings, aliphatic hydroxyl groups, and phenolic groups are the main functional groups in the structure of lignins and condensed tannins. Methoxy groups are also abundant in lignins. Each group displays varying chemical reactivity within these biopolymers. Therefore, the selective and specific functionalization of lignins and condensed tannins can be achieved by understanding the chemistry behavior of these functional groups. Targeted applications include biomedicine, monomers and surface active agents for sustainable plastics.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
3
|
Chowdari RK, Ganji P, Likozar B. Solvent-Free Catalytic Hydrotreatment of Lignin to Biobased Aromatics: Current Trends, Industrial Approach, and Future Perspectives. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2025; 39:2943-2985. [PMID: 39967748 PMCID: PMC11831597 DOI: 10.1021/acs.energyfuels.4c05174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/20/2025]
Abstract
Lignin is the only naturally occurring, renewable biopolymer and an alternative for the production of six-membered aromatic chemicals. The utilization of lignin can increase the additional revenue of biorefineries and reduce the dependence on crude oil for the production of aromatic chemicals. Therefore, the development of technologies for the production of valuable chemicals from lignin waste in biorefineries is of great importance. Catalytic hydrotreatment of lignin is considered one of the most promising technologies for the production of biobased aromatic chemicals and fuels. Among the various hydrotreatment routes, the solvent-free hydrotreatment approach is advantageous because this process reduces production costs and is similar to petroleum refinery processes such as cracking and heteroatom removal. This review addresses recent developments in solvent-free catalytic hydrotreatment of various lignins such as sulfur-containing, sulfur-free, and pyrolytic lignins to produce low oxygen-containing aromatics such as alkylphenolics in batch, semicontinuous, and continuous reactors. Special emphasis is given to the various noble and non-noble metal catalysts, the best route between single and two-stage processing, key factors in solvent-free depolymerization of lignin, techno-economic evaluation, crude oil vs lignin oil refining, challenges and future prospects, etc.
Collapse
Affiliation(s)
- Ramesh Kumar Chowdari
- Institute
of Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Styria, Austria
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova Ulica 19, 1001 Ljubljana, Slovenia
| | - Parameswaram Ganji
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova Ulica 19, 1001 Ljubljana, Slovenia
- Jozef
Stefan Institute, Department of Surface
Engineering, Jamova Cesta
39, 1000 Ljubljana, Slovenia
| | - Blaž Likozar
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova Ulica 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
4
|
Ciolacu F, Măluțan T, Lisa G, Ichim M. Influence of Lignin Type on the Properties of Hemp Fiber-Reinforced Polypropylene Composites. Polymers (Basel) 2024; 16:3442. [PMID: 39684187 DOI: 10.3390/polym16233442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing environmental awareness has boosted interest in sustainable alternatives for binding natural reinforcing fibers in composites. Utilizing lignin, a biorenewable polymer byproduct from several industries, as a component in polymer matrices can lead to the development of more eco-friendly and high-performance composite materials. This research work aimed to investigate the effect of two types of lignin (lignosulfonate and soda lignin) on the properties of hemp fiber-reinforced polypropylene composites for furniture applications. The composites were produced by thermoforming six overlapping layers of nonwoven material. A 20% addition of soda lignin or lignosulfonate (relative to the nonwoven mass) was incorporated between the nonwoven layers made of 80% hemp and 20% polypropylene (PP). The addition of both types of lignin resulted in an increase in the tensile and bending strength of lignin-based composites, as well as a decrease in the absorbed water percentage. Compared to oriented strand board (OSB), lignin-based composites exhibited better properties. Regarding the two types of lignin used, the addition of lignosulfonate resulted in better composite properties than those containing soda lignin. Thermal analysis revealed that the thermal degradation of soda lignin begins long before the melting temperature of polypropylene. This early degradation explains the inferior properties of the composites containing soda lignin compared to those with lignosulfonate.
Collapse
Affiliation(s)
- Florin Ciolacu
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Prof. Dr. Doc. D. Mangeron Blvd, 700050 Iasi, Romania
| | - Teodor Măluțan
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Prof. Dr. Doc. D. Mangeron Blvd, 700050 Iasi, Romania
| | - Gabriela Lisa
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Prof. Dr. Doc. D. Mangeron Blvd, 700050 Iasi, Romania
| | - Mariana Ichim
- Faculty of Industrial Design and Business Management, "Gheorghe Asachi" Technical University of Iasi, 29 Prof. Dr. Doc. D. Mangeron Blvd, 700050 Iasi, Romania
| |
Collapse
|
5
|
Kaur H, Goyal D. Lignin extraction from lignocellulosic biomass and its valorization to therapeutic phenolic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123334. [PMID: 39550950 DOI: 10.1016/j.jenvman.2024.123334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/24/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Lignocellulosic biomass is a sustainable alternative to finite petroleum resources, with lignin emerging as a major component of biomass for producing circular economy products. Maximizing extraction and valorization of lignin to platform chemicals, biofuels, and bioactive compounds is crucial. Unlocking lignin's full potential lies in exploring the therapeutic properties of lignin-derived phenolics, which can definitely boost the economic viability of integrated biorefineries. This review provides a broad vision of lignin valorization stages, covering various techniques of its extraction from lignocellulosic biomass with high yield and purity and its further depolymerization to phenolics. Therapeutic potential of lignin-derived phenols as antioxidants, antimicrobials, anti-inflammatory, and anticancer agents is comprehensively discussed. Lignin, with high phenolic hydroxyl content up to 97% purity, can be extracted using deep eutectic solvents (DES) and organosolv processes. Oxidative and reductive catalytic depolymerization methods efficiently break down lignin into valuable phenolic compounds like alkyl phenolics and vanillin, even at mild temperatures, making them a preferred choice for lignin valorization. Potential of lignin derived phenolics as versatile bioactive compounds with health promoting benefits is highlighted. Phenolics such as vanillin, ferulic acid, and syringic acid have demonstrated the ability to modulate cellular pathways involved in the pathogenesis of diseases like cancer and diabetes. The interplay between high purity lignin extraction and therapeutic potential of lignin-derived phenolics unveils a new frontier in sustainable healthcare solutions.
Collapse
Affiliation(s)
- Harmeet Kaur
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Dinesh Goyal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
6
|
Ramzan H, Usman M, Nadeem F, Shahzaib M, Ur Rahman M, Singhania RR, Jabeen F, Patel AK, Qing C, Liu S, Piechota G, Tahir N. Depolymerization of lignin: Recent progress towards value-added chemicals and biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 386:129492. [PMID: 37463615 DOI: 10.1016/j.biortech.2023.129492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
The need for alternative sources of energy became increasingly urgent as demand for energy and the use of fossil fuels both soared. When processed into aromatic compounds, lignin can be utilized as an alternative to fossil fuels, however, lignin's complex structure and recalcitrance make depolymerization impractical. This article presented an overview of the most recent advances in lignin conversion, including process technology, catalyst advancement, and case study-based end products. In addition to the three established methods (thermochemical, biochemical, and catalytic depolymerization), a lignin-first strategy was presented. Depolymerizing different forms of lignin into smaller phenolic molecules has been suggested using homogeneous and heterogeneous catalysts for oxidation or reduction. Limitations and future prospects of lignin depolymerization have been discussed which suggests that solar-driven catalytic depolymerization through photocatalysts including quantum dots offers a unique pathway to obtain the highly catalytic conversion of lignin.
Collapse
Affiliation(s)
- Hina Ramzan
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Muhammad Usman
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Faiqa Nadeem
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Muhammad Shahzaib
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Muneeb Ur Rahman
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Farzana Jabeen
- Department of Computing, SEECS, National University of Sciences and Technology (NUST), Campus, Sector H-12, Islamabad, Pakistan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chunyao Qing
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengyong Liu
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | | | - Nadeem Tahir
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
7
|
Wu X, De Bruyn M, Barta K. Deriving high value products from depolymerized lignin oil, aided by (bio)catalytic funneling strategies. Chem Commun (Camb) 2023; 59:9929-9951. [PMID: 37526604 DOI: 10.1039/d3cc01555f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Lignin holds tremendous and versatile possibilities to produce value-added chemicals and high performing polymeric materials. Over the years, different cutting-edge lignin depolymerization methodologies have been developed, mainly focusing on achieving excellent yields of mono-phenolic products, some even approaching the theoretical maximum. However, due to lignin's inherent heterogeneity and recalcitrance, its depolymerization leads to relatively complex product streams, also containing dimers, and higher molecular weight fragments in substantial quantities. The subsequent chemo-catalytic valorization of these higher molecular weight streams, containing difficult-to-break, mainly C-C covalent bonds, is tremendously challenging, and has consequently received much less attention. In this minireview, we present an overview of recent advances on the development of sustainable biorefinery strategies aimed at the production of well-defined chemicals and polymeric materials, the prime focus being on depolymerized lignin oils, containing high molecular weight fractions. The key central unit operation to achieve this is (bio)catalytic funneling, which holds great potential to overcome separation and purification challenges.
Collapse
Affiliation(s)
- Xianyuan Wu
- University of Groningen, Stratingh Institute for Chemistry, Nijenborgh 4, Groningen, The Netherlands
| | - Mario De Bruyn
- University of Graz, Department of Chemistry, Organic and Bioorganic Chemistry, Heinrichstrasse 28/II, 8010 Graz, Austria.
| | - Katalin Barta
- University of Groningen, Stratingh Institute for Chemistry, Nijenborgh 4, Groningen, The Netherlands
- University of Graz, Department of Chemistry, Organic and Bioorganic Chemistry, Heinrichstrasse 28/II, 8010 Graz, Austria.
| |
Collapse
|
8
|
Xu X, Li P, Zhong Y, Yu J, Miao C, Tong G. Review on the oxidative catalysis methods of converting lignin into vanillin. Int J Biol Macromol 2023:125203. [PMID: 37270116 DOI: 10.1016/j.ijbiomac.2023.125203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Vanillin plays an important role not only in food and flavouring, but also as a platform compound for the synthesis of other valuable products, mainly derived from the oxidative decarboxylation of petroleum-based guaiacol production. In order to alleviate the problem of collapsing oil resources, the preparation of vanillin from lignin has become a good option from the perspective of environmental sustainability, but it is still not optimistic in terms of vanillin production. Currently, catalytic oxidative depolymerization of lignin for the preparation of vanillin is the main development trend. This paper mainly reviews four ways of preparing vanillin from lignin base: alkaline (catalytic) oxidation, electrochemical (catalytic) oxidation, Fenton (catalytic) oxidation and photo (catalytic) oxidative degradation of lignin. In this work, the working principles, influencing factors, vanillin yields obtained, respective advantages and disadvantages and the development trends of the four methods are systematically summarized, and finally, several methods for the separation and purification of lignin-based vanillin are briefly reviewed.
Collapse
Affiliation(s)
- Xuewen Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Yidan Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangdong Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Guolin Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Wibowo ES, Park BD. Chemical and Thermal Characteristics of Ion-Exchanged Lignosulfonate. Molecules 2023; 28:molecules28062755. [PMID: 36985727 PMCID: PMC10052178 DOI: 10.3390/molecules28062755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Lignosulfonate features sulfonate groups, which makes it soluble in water and hence, suitable for a wide range of applications. However, its characterization is challenging because of its limited solubility in organic solvents. Thus, this study investigated the chemical and thermal characteristics of ion-exchanged sodium lignosulfonate (Na-LS) and compared it with those of industrial kraft lignin derived from softwood and hardwood. The results demonstrated that the ion exchange successfully converted Na-LS to lignosulfonic acid (H-LS), as proven by the Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and elemental analysis. H-LS has a greater apparent molecular weight than those of Na-LS and softwood and hardwood kraft lignin (SKL and HKL). According to 31P nuclear magnetic resonance (NMR) analysis, H-LS has less phenolic OH than SKL and HKL, indicating that it has more polymeric chains. Furthermore, H-LS has substantially more native side chains, such as β-O-4 units, than SKL and HKL. Thermal analysis revealed that H-LS has a greater glass temperature (Tg) than SKL and HKL, although Na-LS has a lower Tg than SKL and HKL. In addition, H-LS degraded faster than Na-LS did because the acid condition accelerated degradation reaction.
Collapse
Affiliation(s)
- Eko Setio Wibowo
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Kristensen T, Hulteberg C, Blomberg S, Tunå P, Abdelaziz O. Parametric Analysis and Optimization of Vanillin Hydrodeoxygenation Over a Sulfided Ni-Mo/δ-Al2O3 Catalyst Under Continuous-Flow Conditions. Top Catal 2022. [DOI: 10.1007/s11244-022-01762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractA fundamental understanding of the process parameters affecting the catalytic hydrodeoxygenation (HDO) of bio-oils is of significance for enabling further progression and improvement of industrial biofuel upgrading methods. Herein, a novel demonstration and evaluation of the effect of temperature, pressure, and weight hourly space velocity in the continuous HDO of vanillin to cresol over a Ni-Mo/δ-Al2O3 catalyst are presented. Response surface methodology was used as a statistical experimental design method, and the application of central composite design enabled the generation of a statistically significant simulation model and a true optimization parametric study. The distribution of Ni and Mo on δ-Al2O3 was confirmed using scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). No gradients with EDX mapping could be identified, and the elemental analysis showed well-dispersion of the metals. The mesoporous character of the catalyst-support system was unraveled using N2 physisorption. Experiments were conducted within the parametric range of 250–350 °C, 3–9 bar, and 15–35 h−1. Both temperature and pressure were found to have statistically significant linear and quadratic effects on the selectivity for cresol. The parametric interaction of temperature with pressure and space velocity also had a significant effect on the resulting response. The optimal temperature range becomes more critical at lower space velocities. Optimal selectivity for cresol was established at 314 °C, 5 bar, and 35 h−1. The fitting quality of the generated regression model was statistically confirmed and experimentally validated to describe the specified HDO process within the 95% two-sided confidence interval.
Collapse
|
11
|
Abdelaziz OY, Clemmensen I, Meier S, Costa CAE, Rodrigues AE, Hulteberg CP, Riisager A. On the Oxidative Valorization of Lignin to High-Value Chemicals: A Critical Review of Opportunities and Challenges. CHEMSUSCHEM 2022; 15:e202201232. [PMID: 36004569 PMCID: PMC9825943 DOI: 10.1002/cssc.202201232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/24/2022] [Indexed: 05/22/2023]
Abstract
The efficient valorization of lignin is crucial if we are to replace current petroleum-based feedstock and establish more sustainable and competitive lignocellulosic biorefineries. Pulp and paper mills and second-generation biorefineries produce large quantities of low-value technical lignin as a by-product, which is often combusted on-site for energy recovery. This Review focuses on the conversion of technical lignins by oxidative depolymerization employing heterogeneous catalysts. It scrutinizes the current literature describing the use of various heterogeneous catalysts in the oxidative depolymerization of lignin and includes a comparison of the methods, catalyst loadings, reaction media, and types of catalyst applied, as well as the reaction products and yields. Furthermore, current techniques for the determination of product yields and product recovery are discussed. Finally, challenges and suggestions for future approaches are outlined.
Collapse
Affiliation(s)
- Omar Y. Abdelaziz
- Department of Chemical EngineeringLund UniversityNaturvetarvägen 14SE-221 00LundSweden
| | - Ida Clemmensen
- Department of ChemistryTechnical University of DenmarkKemitorvet 207DK-2800 Kgs.LyngbyDenmark
| | - Sebastian Meier
- Department of ChemistryTechnical University of DenmarkKemitorvet 207DK-2800 Kgs.LyngbyDenmark
| | - Carina A. E. Costa
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM)Department of Chemical EngineeringFaculty of EngineeringUniversity of PortoRua Dr. Roberto Frias4200-465PortoPortugal
- Associate Laboratory in Chemical Engineering (ALiCE)Department of Chemical EngineeringFaculty of EngineeringUniversity of PortoRua Dr. Roberto Frias4200-465PortoPortugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM)Department of Chemical EngineeringFaculty of EngineeringUniversity of PortoRua Dr. Roberto Frias4200-465PortoPortugal
- Associate Laboratory in Chemical Engineering (ALiCE)Department of Chemical EngineeringFaculty of EngineeringUniversity of PortoRua Dr. Roberto Frias4200-465PortoPortugal
| | | | - Anders Riisager
- Department of ChemistryTechnical University of DenmarkKemitorvet 207DK-2800 Kgs.LyngbyDenmark
| |
Collapse
|
12
|
Sheng Z, Shao L, Zhang L, Zhan P, Wu Z. Catalytic Oxidative Depolymerization of Sodium Lignosulfonate into Valuable Esters over Cu
x
O/m‐Sep Catalyst in H
2
O Solvent Systems. ChemistrySelect 2022. [DOI: 10.1002/slct.202202575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhiyuan Sheng
- Ministry of Forestry Bioethanol Research Center College of Materials Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Lishu Shao
- Ministry of Forestry Bioethanol Research Center College of Materials Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
- Hunan International Joint Laboratory of Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- Hunan Engineering Research Center for Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
| | - Lin Zhang
- Ministry of Forestry Bioethanol Research Center College of Materials Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
- Hunan International Joint Laboratory of Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- Hunan Engineering Research Center for Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
| | - Peng Zhan
- Ministry of Forestry Bioethanol Research Center College of Materials Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
- Hunan International Joint Laboratory of Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- Hunan Engineering Research Center for Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
| | - Zhiping Wu
- Ministry of Forestry Bioethanol Research Center College of Materials Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
- Hunan International Joint Laboratory of Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
- Hunan Engineering Research Center for Woody Biomass Conversion Central South University of Forestry and Technology Changsha 410004 China
| |
Collapse
|
13
|
Panyadee R, Saengsrichan A, Posoknistakul P, Laosiripojana N, Ratchahat S, Matsagar BM, Wu KCW, Sakdaronnarong C. Lignin-Derived Syringol and Acetosyringone from Palm Bunch Using Heterogeneous Oxidative Depolymerization over Mixed Metal Oxide Catalysts under Microwave Heating. Molecules 2021; 26:7444. [PMID: 34946525 PMCID: PMC8707958 DOI: 10.3390/molecules26247444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Biomass valorization to building block chemicals in food and pharmaceutical industries has tremendously gained attention. To produce monophenolic compounds from palm empty fruit bunch (EFB), EFB was subjected to alkaline hydrothermal extraction using NaOH or K2CO3 as a promotor. Subsequently, EFB-derived lignin was subjected to an oxidative depolymerization using Cu(II) and Fe(III) mixed metal oxides catalyst supported on γ-Al2O3 or SiO2 as the catalyst in the presence of hydrogen peroxide. The highest percentage of total phenolic compounds of 63.87 wt% was obtained from microwave-induced oxidative degradation of K2CO3 extracted lignin catalyzed by Cu-Fe/SiO2 catalyst. Main products from the aforementioned condition included 27.29 wt% of 2,4-di-tert-butylphenol, 19.21 wt% of syringol, 9.36 wt% of acetosyringone, 3.69 wt% of acetovanillone, 2.16 wt% of syringaldehyde, and 2.16 wt% of vanillin. Although the total phenolic compound from Cu-Fe/Al2O3 catalyst was lower (49.52 wt%) compared with that from Cu-Fe/SiO2 catalyst (63.87 wt%), Cu-Fe/Al2O3 catalyst provided the greater selectivity of main two value-added products, syringol and acetosyrigone, at 54.64% and 23.65%, respectively (78.29% total selectivity of two products) from the NaOH extracted lignin. The findings suggested a promising method for syringol and acetosyringone production from the oxidative heterogeneous lignin depolymerization under low power intensity microwave heating within a short reaction time of 30 min.
Collapse
Affiliation(s)
- Rangsalid Panyadee
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 999 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakorn Pathom 73170, Thailand; (R.P.); (A.S.); (P.P.); (S.R.)
| | - Aphinan Saengsrichan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 999 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakorn Pathom 73170, Thailand; (R.P.); (A.S.); (P.P.); (S.R.)
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 999 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakorn Pathom 73170, Thailand; (R.P.); (A.S.); (P.P.); (S.R.)
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Tungkru, Bangkok 10140, Thailand;
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 999 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakorn Pathom 73170, Thailand; (R.P.); (A.S.); (P.P.); (S.R.)
| | - Babasaheb M. Matsagar
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4 Roosevelt Road, Taipei City 10617, Taiwan; (B.M.M.); (K.C.-W.W.)
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4 Roosevelt Road, Taipei City 10617, Taiwan; (B.M.M.); (K.C.-W.W.)
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei City 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU), Taipei City 10617, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 999 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakorn Pathom 73170, Thailand; (R.P.); (A.S.); (P.P.); (S.R.)
| |
Collapse
|
14
|
Liang J, Wang M, Zhao Y, Yan W, Si X, Yu G, Cao J, Wei X. Nano WO
3
‐Catalyzed One‐Pot Process for Mild Oxidative Depolymerization of Lignin and its Model Compounds. ChemCatChem 2021. [DOI: 10.1002/cctc.202100670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jing Liang
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Meng‐Xiao Wang
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Yun‐Peng Zhao
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Wei‐Wei Yan
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Xing‐Gang Si
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Guo Yu
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Jing‐Pei Cao
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Xian‐Yong Wei
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| |
Collapse
|
15
|
Prothmann J, Palmer S, Turner C, Sandahl M. Separation of monomeric and dimeric phenolic compounds in lignosulphonate lignin on different stationary phases using ultrahigh-performance supercritical fluid chromatography. J Chromatogr A 2021; 1653:462408. [PMID: 34320433 DOI: 10.1016/j.chroma.2021.462408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022]
Abstract
Lignin is a promising renewable resource and its valorization could help to reduce our dependency on fossil carbon resources. Especially the production of small molecular weight and economically valuable compounds, such as vanillin, are of interest. A good separation of the sample components is crucial for a confident identification of compounds in complex sample mixtures using for instance mass spectrometry. In this work, the resolving power and selectivity of five different stationary phases for ultrahigh-performance supercritical fluid chromatography were studied for the class separation of lignin monomers (LMs) and dimers (LDs). A separation of LMs and LDs will help to identify such compounds in complex technical lignin samples. It could be shown that stationary phases with both hydrogen-bonding acceptor and donator groups offer high overall resolving power, while π-π-interactions are advantageous for the separation of the two compound classes. An almost complete separation combined with an improved overall resolving power was achieved with the 1-aminoanthracene stationary phase, which offers both hydrogen-bonding interactions and π-π-interactions.
Collapse
Affiliation(s)
- Jens Prothmann
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis, P.O. Box 124, SE-22100 Lund, Sweden
| | - Simon Palmer
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis, P.O. Box 124, SE-22100 Lund, Sweden
| | - Charlotta Turner
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis, P.O. Box 124, SE-22100 Lund, Sweden
| | - Margareta Sandahl
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis, P.O. Box 124, SE-22100 Lund, Sweden.
| |
Collapse
|
16
|
Formation of Humic-Like Substances during the Technological Process of Lignohumate® Synthesis as a Function of Time. SEPARATIONS 2021. [DOI: 10.3390/separations8070096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The composition, structure, and biological activity of humic-like substances (HLS) synthesized in the process of lignosulfonate conversion for the production of the humic product Lignohumate® (LH) were examined. It is shown that during the hydrolytic-oxidative process, the transformation of raw material and accumulation of HLS occur. Data on the chemical (elemental content, functional groups, FTIR) and spectral (absorbance and fluorescence) parameters and biological activity (in phytotest) combined with PCA show that the LH samples can be divided into three groups, depending on the duration of synthesis: initial raw material (0-time sample); “young” HLS (15–30 min), and “mature” HLS in 45–120 min of treatment. During the first 30 min, reactions similar to the ones that occur during lignin humification in nature take place: depolymerization, oxidative carboxylation, and further polycondensation with the formation and accumulation of HLS. After 45–60 min, the share of HLS reaches a maximum, and its composition stabilizes. Biological activity reaches a maximum after 45–60 min of treatment, and at that stage, the further synthesis process can be stopped. Further processing (up to 2 h and more) does not provide any added value to the humic product.
Collapse
|
17
|
Walch F, Abdelaziz OY, Meier S, Bjelić S, Hulteberg CP, Riisager A. Oxidative depolymerization of Kraft lignin to high-value aromatics using a homogeneous vanadium–copper catalyst. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02158j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Kraft lignin is efficiently depolymerized under benign conditions into value-added aromatics and high-quality bio-oil using a facile vanadium–copper catalyst system.
Collapse
Affiliation(s)
- Florian Walch
- Centre for Catalysis and Sustainable Chemistry
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | | | - Sebastian Meier
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Saša Bjelić
- Laboratory for Bioenergy and Catalysis
- Paul Scherrer Institute
- 5232 Villigen
- Switzerland
| | | | - Anders Riisager
- Centre for Catalysis and Sustainable Chemistry
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| |
Collapse
|
18
|
Molybdenum and Nickel Nanoparticles Synthesis by Laser Ablation towards the Preparation of a Hydrodesulfurization Catalyst. Catalysts 2020. [DOI: 10.3390/catal10091076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A clean straightforward laser ablation method in deionized (DI) water is reported for the synthesis of Molybdenum (Mo) and Nickel (Ni) nanoparticles (NPs). The structural, morphological, and optical properties of the as-synthesized nanoparticles were investigated. Particle size was estimated to be less than 10 nm, the UV–vis spectra of the samples show the formation of H2MoO4 and NiO. The XRD results for the Ni sample show the presence of two phases, cubic nickel oxide, and an fcc metallic nickel phase, indicating the possible formation of Ni/NiO compound. The nanoparticles synthesized were used as precursors in the production of a NiMo/γ-Al2O3 catalyst. The textural and structural properties, chemical composition, and catalytic performance in a hydrodesulfurization (HDS) reaction are reported. The textural and structural properties results show the lack of pore-blocking due to the small sizes and the distribution of the metallic nanoparticles on the support. Chemical composition measured by XPS shows a ratio Ni/Mo of 1.34. Therefore, possibly Ni was deposited on Mo covering part of its active area, occupying active sites of Mo, removing its effective surface and resulting in a relatively low conversion of DBT (17%). A lower Ni/Mo ratio is required to improve the model system, which could be achieved by changing parameters at the production of the nanoparticles. The model system can also be further tuned by changing the size of the nanoparticles.
Collapse
|
19
|
Blomberg S, Johansson N, Kokkonen E, Rissler J, Kollberg L, Preger C, Franzén SM, Messing ME, Hulteberg C. Bimetallic Nanoparticles as a Model System for an Industrial NiMo Catalyst. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3727. [PMID: 31718101 PMCID: PMC6887974 DOI: 10.3390/ma12223727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 01/14/2023]
Abstract
An in-depth understanding of the reaction mechanism is required for the further development of Mo-based catalysts for biobased feedstocks. However, fundamental studies of industrial catalysts are challenging, and simplified systems are often used without direct comparison to their industrial counterparts. Here, we report on size-selected bimetallic NiMo nanoparticles as a candidate for a model catalyst that is directly compared to the industrial system to evaluate their industrial relevance. Both the nanoparticles and industrial supported NiMo catalysts were characterized using surface- and bulk-sensitive techniques. We found that the active Ni and Mo metals in the industrial catalyst are well dispersed and well mixed on the support, and that the interaction between Ni and Mo promotes the reduction of the Mo oxide. We successfully produced 25 nm NiMo alloyed nanoparticles with a narrow size distribution. Characterization of the nanoparticles showed that they have a metallic core with a native oxide shell with a high potential for use as a model system for fundamental studies of hydrotreating catalysts for biobased feedstocks.
Collapse
Affiliation(s)
- Sara Blomberg
- Department of Chemical Engineering, Lund University, 221 00 Lund, Sweden
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8196, USA
| | | | - Esko Kokkonen
- MAX IV Laboratory, Lund University, 221 00 Lund, Sweden
| | - Jenny Rissler
- Bioscience and Materials, RISE Research Institute of Technology, 223 70 Lund, Sweden
- Design Sciences, Lund University, 221 00 Lund, Sweden
| | | | - Calle Preger
- NanoLund, Division of Solid State Physics, Lund University, 221 00 Lund, Sweden
| | - Sara M Franzén
- NanoLund, Division of Solid State Physics, Lund University, 221 00 Lund, Sweden
| | - Maria E Messing
- NanoLund, Division of Solid State Physics, Lund University, 221 00 Lund, Sweden
| | | |
Collapse
|