1
|
A New Method for Extracting Individual Plant Bio-Characteristics from High-Resolution Digital Images. REMOTE SENSING 2021. [DOI: 10.3390/rs13061212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The extraction of automated plant phenomics from digital images has advanced in recent years. However, the accuracy of extracted phenomics, especially for individual plants in a field environment, requires improvement. In this paper, a new and efficient method of extracting individual plant areas and their mean normalized difference vegetation index from high-resolution digital images is proposed. The algorithm was applied on perennial ryegrass row field data multispectral images taken from the top view. First, the center points of individual plants from digital images were located to exclude plant positions without plants. Second, the accurate area of each plant was extracted using its center point and radius. Third, the accurate mean normalized difference vegetation index of each plant was extracted and adjusted for overlapping plants. The correlation between the extracted individual plant phenomics and fresh weight ranged between 0.63 and 0.75 across four time points. The methods proposed are applicable to other crops where individual plant phenotypes are of interest.
Collapse
|
2
|
Rudolf M, Mir Mohi Sefat A, Miura Y, Tura A, Raasch W, Ranjbar M, Grisanti S, Aherrahrou Z, Wagner A, Messinger JD, Garber DW, Anantharamaiah GM, Curcio CA. ApoA-I Mimetic Peptide 4F Reduces Age-Related Lipid Deposition in Murine Bruch's Membrane and Causes Its Structural Remodeling. Curr Eye Res 2017; 43:135-146. [PMID: 28972410 DOI: 10.1080/02713683.2017.1370118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Accumulation of lipoprotein-derived lipids including esterified and unesterified cholesterol in Bruch's membrane of human eyes is a major age-related change involved in initiating and sustaining soft drusen in age-related macular degeneration (AMD). The apolipoprotein (apo) A-I mimetic peptide 4F is a small anti-inflammatory and anti-atherogenic agent, and potent modifier of plasma membranes. We evaluated the effect of intravitreally-injected 4F on murine Bruch's membrane. METHODS We tested single intravitreal injections of 4F doses (0.6 µg, 1.2 µg, 2.4 µg, and placebo scrambled peptide) in ApoEnull mice ≥10 months of age. After 30 days, mice were euthanized. Eyes were processed for either direct immunofluorescence detection of esterified cholesterol (EC) in Bruch's membrane whole mounts via a perfringolysin O-based marker linked to green fluorescent protein or by transmission electron microscopic visualization of Bruch's membrane integrity. Fluorescein isothiocyanate-conjugated 4F was traced after injection. RESULTS All injected eyes showed a dose-dependent reduction of Bruch's membrane EC with a concomitant ultrastructural improvement compared to placebo treated eyes. At a 2.4 µg dose of 4F, EC was reduced on average by ~60% and Bruch's membrane returned to a regular pentalaminar structure and thickness. Tracer studies confirmed that injected 4F reached intraocular targets. CONCLUSION We demonstrated a highly effective pharmacological reduction of EC and restoration of Bruch's membrane ultrastructure. The apoA-I mimetic peptide 4F is a novel way to treat a critical AMD disease process and thus represents a new candidate for treating the underlying cause of AMD.
Collapse
Affiliation(s)
- Martin Rudolf
- a Department of Ophthalmology , University of Lübeck , Lübeck , Germany
| | | | - Yoko Miura
- a Department of Ophthalmology , University of Lübeck , Lübeck , Germany
| | - Aysegül Tura
- a Department of Ophthalmology , University of Lübeck , Lübeck , Germany
| | - Walter Raasch
- b Department of Experimental and Clinical Pharmacology and Toxicology , University of Lübeck , Lübeck , Germany
| | - Mahdy Ranjbar
- a Department of Ophthalmology , University of Lübeck , Lübeck , Germany.,c Laboratory for Angiogenesis & Ocular Cell Transplantation , University of Lübeck , Lübeck , Germany
| | | | - Zouhair Aherrahrou
- d Institute of Integrative and Experimental Genomics , University of Lübeck , Lübeck , Germany
| | - Anna Wagner
- a Department of Ophthalmology , University of Lübeck , Lübeck , Germany
| | - Jeffrey D Messinger
- e Department of Ophthalmology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - David W Garber
- f Atherosclerosis Research Unit , University of Alabama at Birmingham , Birmingham , AL , USA
| | - G M Anantharamaiah
- f Atherosclerosis Research Unit , University of Alabama at Birmingham , Birmingham , AL , USA.,g Department of Medicine, Biochemistry and Molecular Genetics , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Christine A Curcio
- e Department of Ophthalmology , University of Alabama at Birmingham , Birmingham , AL , USA
| |
Collapse
|
3
|
Gilleron J, Paramasivam P, Zeigerer A, Querbes W, Marsico G, Andree C, Seifert S, Amaya P, Stöter M, Koteliansky V, Waldmann H, Fitzgerald K, Kalaidzidis Y, Akinc A, Maier MA, Manoharan M, Bickle M, Zerial M. Identification of siRNA delivery enhancers by a chemical library screen. Nucleic Acids Res 2015. [PMID: 26220182 PMCID: PMC4652771 DOI: 10.1093/nar/gkv762] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2–5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types.
Collapse
Affiliation(s)
- Jerome Gilleron
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany INSERM U1065, Centre Méditerranéen de Médecine Moléculaire C3M, Nice, France; Université de Nice Sophia-Antipolis, Nice, France
| | - Prasath Paramasivam
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany
| | - Anja Zeigerer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany
| | | | - Giovanni Marsico
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany
| | - Cordula Andree
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany
| | - Pablo Amaya
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany
| | - Martin Stöter
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany
| | - Victor Koteliansky
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory, 1/3, Moscow 119991, Russia Skolkovo Institute of Science and Technology, 100 Novaya str., Skolkovo, Odinsovsky district, Moscow 143025, Russia
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany Chemical Biology, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | | | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany
| | - Akin Akinc
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| | | | | | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 01307, Dresden, Germany
| |
Collapse
|
4
|
Ochs M. Estimating structural alterations in animal models of lung emphysema. Is there a gold standard? Ann Anat 2013; 196:26-33. [PMID: 24268708 DOI: 10.1016/j.aanat.2013.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/07/2013] [Accepted: 10/12/2013] [Indexed: 01/08/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases. The major component of COPD, which affects the gas-exchanging parenchyma of the lung, emphysema, is characterized by destruction of alveolar septae leading to loss of functional surface, loss of alveoli and enlargement of remaining distal airspaces. These microstructural alterations can be modeled in animals and can be measured using stereological methods applied to imaging datasets. Many animal models of emphysema exist, but most of them are insufficiently characterized with respect to the underlying nature (e.g. destructive or developmental) and the degree of the structural alterations. The most popular parameter for assessment of emphysematous alterations, mean linear intercept length, has severe limitations. It can, therefore, not be recommended. Better design-based stereological alternatives exist but are less often applied, such as total volumes of parenchymal compartments (alveolar airspace, alveolar duct airspace, alveolar septum), total alveolar surface area, total alveolar number and mean alveolar size and its size variation. A prerequisite is the use of appropriate fixation, sampling, and specimen processing protocols. This article reviews the challenges of stereologic assessment of emphysematous alterations in the lung and illustrates possible strategies.
Collapse
Affiliation(s)
- Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; REBIRTH Cluster of Excellence, Hannover, Germany.
| |
Collapse
|
5
|
Giddabasappa A, Hamilton WR, Chaney S, Xiao W, Johnson JE, Mukherjee S, Fox DA. Low-level gestational lead exposure increases retinal progenitor cell proliferation and rod photoreceptor and bipolar cell neurogenesis in mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:71-7. [PMID: 20840909 PMCID: PMC3018503 DOI: 10.1289/ehp.1002524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 09/14/2010] [Indexed: 05/25/2023]
Abstract
BACKGROUND Gestational lead exposure (GLE) produces novel and persistent rod-mediated electroretinographic (ERG) supernormality in children and adult animals. OBJECTIVES We used our murine GLE model to test the hypothesis that GLE increases the number of neurons in the rod signaling pathway and to determine the cellular mechanisms underlying the phenotype. RESULTS Blood lead concentrations ([BPb]) in controls and after low-, moderate-, and high-dose GLE were ≤ 1, ≤ 10, approximately 25, and approximately 40 µg/dL, respectively, at the end of exposure [postnatal day 10 (PND10)]; by PND30 all [BPb] measures were ≤ 1 µg/dL. Epifluorescent, light, and confocal microscopy studies and Western blots demonstrated that late-born rod photoreceptors and rod and cone bipolar cells (BCs), but not Müller glial cells, increased in a nonmonotonic manner by 16-30% in PND60 GLE offspring. Retinal lamination and the rod:cone BC ratio were not altered. In vivo BrdU (5-bromo-2-deoxyuridine) pulse-labeling and Ki67 labeling of isolated cells from developing mice showed that GLE increased and prolonged retinal progenitor cell proliferation. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) and confocal studies revealed that GLE did not alter developmental apoptosis or produce retinal injury. BrdU birth-dating and confocal studies confirmed the selective rod and BC increases and showed that the patterns of neurogenesis and gliogenesis were unaltered by GLE. CONCLUSIONS Our findings suggest two spatiotemporal components mediated by dysregulation of different extrinsic/intrinsic factors: increased and prolonged cell proliferation and increased neuronal (but not glial) cell fate. These findings have relevance for neurotoxicology, pediatrics, public health, risk assessment, and retinal cell biology because they occurred at clinically relevant [BPb] and correspond with the ERG phenotype.
Collapse
Affiliation(s)
| | | | | | - Weimin Xiao
- College of Optometry, University of Houston, Houston, Texas, USA
| | - Jerry E. Johnson
- Department of Natural Sciences, University of Houston–Downtown, Houston, Texas, USA
| | | | - Donald A. Fox
- Department of Biology and Biochemistry and
- College of Optometry, University of Houston, Houston, Texas, USA
- Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| |
Collapse
|
6
|
|
7
|
Winkelmann CT, Wise LD. High-throughput micro-computed tomography imaging as a method to evaluate rat and rabbit fetal skeletal abnormalities for developmental toxicity studies. J Pharmacol Toxicol Methods 2009; 59:156-65. [DOI: 10.1016/j.vascn.2009.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 03/07/2009] [Indexed: 10/20/2022]
|
8
|
Bayascas JR, Wullschleger S, Sakamoto K, García-Martínez JM, Clacher C, Komander D, van Aalten DMF, Boini KM, Lang F, Lipina C, Logie L, Sutherland C, Chudek JA, van Diepen JA, Voshol PJ, Lucocq JM, Alessi DR. Mutation of the PDK1 PH domain inhibits protein kinase B/Akt, leading to small size and insulin resistance. Mol Cell Biol 2008; 28:3258-72. [PMID: 18347057 PMCID: PMC2423167 DOI: 10.1128/mcb.02032-07] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/29/2008] [Accepted: 02/26/2008] [Indexed: 11/20/2022] Open
Abstract
PDK1 activates a group of kinases, including protein kinase B (PKB)/Akt, p70 ribosomal S6 kinase (S6K), and serum and glucocorticoid-induced protein kinase (SGK), that mediate many of the effects of insulin as well as other agonists. PDK1 interacts with phosphoinositides through a pleckstrin homology (PH) domain. To study the role of this interaction, we generated knock-in mice expressing a mutant of PDK1 incapable of binding phosphoinositides. The knock-in mice are significantly small, insulin resistant, and hyperinsulinemic. Activation of PKB is markedly reduced in knock-in mice as a result of lower phosphorylation of PKB at Thr308, the residue phosphorylated by PDK1. This results in the inhibition of the downstream mTOR complex 1 and S6K1 signaling pathways. In contrast, activation of SGK1 or p90 ribosomal S6 kinase or stimulation of S6K1 induced by feeding is unaffected by the PDK1 PH domain mutation. These observations establish the importance of the PDK1-phosphoinositide interaction in enabling PKB to be efficiently activated with an animal model. Our findings reveal how reduced activation of PKB isoforms impinges on downstream signaling pathways, causing diminution of size as well as insulin resistance.
Collapse
Affiliation(s)
- Jose R Bayascas
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|