1
|
Saito Y, Yamamoto S, Chikenji TS. Role of cellular senescence in inflammation and regeneration. Inflamm Regen 2024; 44:28. [PMID: 38831382 PMCID: PMC11145896 DOI: 10.1186/s41232-024-00342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
Cellular senescence is the state in which cells undergo irreversible cell cycle arrest and acquire diverse phenotypes. It has been linked to chronic inflammation and fibrosis in various organs as well as to individual aging. Therefore, eliminating senescent cells has emerged as a potential target for extending healthy lifespans. Cellular senescence plays a beneficial role in many biological processes, including embryonic development, wound healing, and tissue regeneration, which is mediated by the activation of stem cells. Therefore, a comprehensive understanding of cellular senescence, including both its beneficial and detrimental effects, is critical for developing safe and effective treatment strategies to target senescent cells. This review provides an overview of the biological and pathological roles of cellular senescence, with a particular focus on its beneficial or detrimental functions among its various roles.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Takako S Chikenji
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
2
|
Cherry C, Andorko JI, Krishnan K, Mejías JC, Nguyen HH, Stivers KB, Gray-Gaillard EF, Ruta A, Han J, Hamada N, Hamada M, Sturmlechner I, Trewartha S, Michel JH, Davenport Huyer L, Wolf MT, Tam AJ, Peña AN, Keerthivasan S, Le Saux CJ, Fertig EJ, Baker DJ, Housseau F, van Deursen JM, Pardoll DM, Elisseeff JH. Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies. GeroScience 2023; 45:2559-2587. [PMID: 37079217 PMCID: PMC10651581 DOI: 10.1007/s11357-023-00785-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023] Open
Abstract
Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells' (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo-derived senescence signature (SenSig) using a foreign body response-driven fibrosis model in a p16-CreERT2;Ai14 reporter mouse. We identified pericytes and "cartilage-like" fibroblasts as senescent and defined cell type-specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34-CSF1R-TGFβR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.
Collapse
Affiliation(s)
- Christopher Cherry
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James I Andorko
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kavita Krishnan
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joscelyn C Mejías
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen Hieu Nguyen
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katlin B Stivers
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elise F Gray-Gaillard
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Ruta
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Naomi Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ines Sturmlechner
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| | - Shawn Trewartha
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - John H Michel
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Locke Davenport Huyer
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew T Wolf
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ada J Tam
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexis N Peña
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shilpa Keerthivasan
- Tumor Microenvironment Thematic Research Center, Bristol Myers Squibb, San Francisco, CA, USA
| | - Claude Jordan Le Saux
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Elana J Fertig
- Department of Biomedical Engineering and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Paul F. Glenn Center for the Biology of Aging Research at Mayo Clinic, Rochester, MN, USA
| | - Franck Housseau
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Flümann R, Hansen J, Pelzer BW, Nieper P, Lohmann T, Kisis I, Riet T, Kohlhas V, Nguyen PH, Peifer M, Abedpour N, Bosco G, Thomas RK, Kochanek M, Knüfer J, Jonigkeit L, Beleggia F, Holzem A, Büttner R, Lohneis P, Meinel J, Ortmann M, Persigehl T, Hallek M, Calado DP, Chmielewski M, Klein S, Göthert JR, Chapuy B, Zevnik B, Wunderlich FT, von Tresckow B, Jachimowicz RD, Melnick AM, Reinhardt HC, Knittel G. Distinct Genetically Determined Origins of Myd88/BCL2-Driven Aggressive Lymphoma Rationalize Targeted Therapeutic Intervention Strategies. Blood Cancer Discov 2023; 4:78-97. [PMID: 36346827 PMCID: PMC9816818 DOI: 10.1158/2643-3230.bcd-22-0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/06/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Genomic profiling revealed the identity of at least 5 subtypes of diffuse large B-cell lymphoma (DLBCL), including the MCD/C5 cluster characterized by aberrations in MYD88, BCL2, PRDM1, and/or SPIB. We generated mouse models harboring B cell-specific Prdm1 or Spib aberrations on the background of oncogenic Myd88 and Bcl2 lesions. We deployed whole-exome sequencing, transcriptome, flow-cytometry, and mass cytometry analyses to demonstrate that Prdm1- or Spib-altered lymphomas display molecular features consistent with prememory B cells and light-zone B cells, whereas lymphomas lacking these alterations were enriched for late light-zone and plasmablast-associated gene sets. Consistent with the phenotypic evidence for increased B cell receptor signaling activity in Prdm1-altered lymphomas, we demonstrate that combined BTK/BCL2 inhibition displays therapeutic activity in mice and in five of six relapsed/refractory DLBCL patients. Moreover, Prdm1-altered lymphomas were immunogenic upon transplantation into immuno-competent hosts, displayed an actionable PD-L1 surface expression, and were sensitive to antimurine-CD19-CAR-T cell therapy, in vivo. SIGNIFICANCE Relapsed/refractory DLBCL remains a major medical challenge, and most of these patients succumb to their disease. Here, we generated mouse models, faithfully recapitulating the biology of MYD88-driven human DLBCL. These models revealed robust preclinical activity of combined BTK/BCL2 inhibition. We confirmed activity of this regimen in pretreated non-GCB-DLBCL patients. See related commentary by Leveille et al., p. 8. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Ruth Flümann
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Aachen Bonn Cologne Düsseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Julia Hansen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Benedikt W. Pelzer
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Aachen Bonn Cologne Düsseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York
| | - Pascal Nieper
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Aachen Bonn Cologne Düsseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tim Lohmann
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Aachen Bonn Cologne Düsseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ilmars Kisis
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Aachen Bonn Cologne Düsseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department of Translational Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias Riet
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Viktoria Kohlhas
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Phuong-Hien Nguyen
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Martin Peifer
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Translational Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nima Abedpour
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Translational Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Graziella Bosco
- Department of Translational Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman K. Thomas
- Department of Translational Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Moritz Kochanek
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jacqueline Knüfer
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lorenz Jonigkeit
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Filippo Beleggia
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Aachen Bonn Cologne Düsseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department of Translational Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alessandra Holzem
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Aachen Bonn Cologne Düsseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Philipp Lohneis
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jörn Meinel
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Monika Ortmann
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Department of Radiology and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Aachen Bonn Cologne Düsseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | - Markus Chmielewski
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Sebastian Klein
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, West German Cancer Center, German Cancer Consortium (DKTK partner site Essen), Center for Molecular Biotechnology, Essen, Germany
| | - Joachim R. Göthert
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, West German Cancer Center, German Cancer Consortium (DKTK partner site Essen), Center for Molecular Biotechnology, Essen, Germany
| | - Bjoern Chapuy
- Department of Hematology, Oncology and Tumorimmunology, Charité, University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Branko Zevnik
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - F. Thomas Wunderlich
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, West German Cancer Center, German Cancer Consortium (DKTK partner site Essen), Center for Molecular Biotechnology, Essen, Germany
| | - Ron D. Jachimowicz
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Aachen Bonn Cologne Düsseldorf, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ari M. Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, West German Cancer Center, German Cancer Consortium (DKTK partner site Essen), Center for Molecular Biotechnology, Essen, Germany
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, West German Cancer Center, German Cancer Consortium (DKTK partner site Essen), Center for Molecular Biotechnology, Essen, Germany
| |
Collapse
|
4
|
Bourgeois-Jaarsma Q, Miaja Hernandez P, Groffen AJ. Ca 2+ sensor proteins in spontaneous release and synaptic plasticity: Limited contribution of Doc2c, rabphilin-3a and synaptotagmin 7 in hippocampal glutamatergic neurons. Mol Cell Neurosci 2021; 112:103613. [PMID: 33753311 DOI: 10.1016/j.mcn.2021.103613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022] Open
Abstract
Presynaptic neurotransmitter release is strictly regulated by SNARE proteins, Ca2+ and a number of Ca2+ sensors including synaptotagmins (Syts) and Double C2 domain proteins (Doc2s). More than seventy years after the original description of spontaneous release, the mechanism that regulates this process is still poorly understood. Syt-1, Syt7 and Doc2 proteins contribute predominantly, but not exclusively, to synchronous, asynchronous and spontaneous phases of release. The proteins share a conserved tandem C2 domain architecture, but are functionally diverse in their subcellular location, Ca2+-binding properties and protein interactions. In absence of Syt-1, Doc2a and -b, neurons still exhibit spontaneous vesicle fusion which remains Ca2+-sensitive, suggesting the existence of additional sensors. Here, we selected Doc2c, rabphilin-3a and Syt-7 as three potential Ca2+ sensors for their sequence homology with Syt-1 and Doc2b. We genetically ablated each candidate gene in absence of Doc2a and -b and investigated spontaneous and evoked release in glutamatergic hippocampal neurons, cultured either in networks or on microglial islands (autapses). The removal of Doc2c had no effect on spontaneous or evoked release. Syt-7 removal also did not affect spontaneous release, although it altered short-term plasticity by accentuating short-term depression. The removal of rabphilin caused an increased spontaneous release frequency in network cultures, an effect that was not observed in autapses. Taken together, we conclude that Doc2c and Syt-7 do not affect spontaneous release of glutamate in hippocampal neurons, while our results suggest a possible regulatory role of rabphilin-3a in neuronal networks. These findings importantly narrow down the repertoire of synaptic Ca2+ sensors that may be implicated in the spontaneous release of glutamate.
Collapse
Affiliation(s)
- Quentin Bourgeois-Jaarsma
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Pablo Miaja Hernandez
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Alexander J Groffen
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Department of Clinical Genetics, VU Medical Center, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Yasuda T, Saito Y, Ono C, Kawata K, Baba A, Baba Y. Generation and characterization of CD19-iCre mice as a tool for efficient and specific conditional gene targeting in B cells. Sci Rep 2021; 11:5524. [PMID: 33750849 PMCID: PMC7943778 DOI: 10.1038/s41598-021-84786-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
The Cre/loxP system is a powerful tool for generating conditional gene knockout (KO) mice and elucidate gene function in vivo. CD19-Cre and Mb1-iCre transgenic mice are commonly used for generating B cell-specific KO mice and investigate the development, as well as the physiological and pathophysiological roles of B cells. However, the CD19-Cre line low efficiency and the Mb1-iCre line occasional ectopic recombination represent challenges for their use. Thus, we developed a CD19-codon-improved Cre (CD19-iCre) knock-in mouse with the T2A-iCre sequence inserted into the Cd19 locus, just before the stop codon. The CD19-iCre mice were compared with existing models, crossed with the Rosa26-EYFP reporter mice, and their recombination activity in B cells carrying different Cre alleles was assessed. CD19-iCre mice showed more effective Cre recombination in the early B cell developmental stages compared with the CD19-Cre mice. The efficiencies of the CD19-iCre and Mb1-iCre lines were similar; however, the B lineage-specific recombination was more stringent in the CD19-iCre line. Furthermore, the utility value of the CD19-iCre model was superior than that of the CD19-Cre mice regarding deletion efficiency in IL10-floxed mice. Thus, the CD19-iCre line is a valuable tool for highly efficient gene targeting specific to the B cell compartment.
Collapse
Affiliation(s)
- Tomoharu Yasuda
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 739-8511, Japan.
| | - Yuichi Saito
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chisato Ono
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuhiko Kawata
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akemi Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
6
|
Generation of a p16 Reporter Mouse and Its Use to Characterize and Target p16 high Cells In Vivo. Cell Metab 2020; 32:814-828.e6. [PMID: 32949498 DOI: 10.1016/j.cmet.2020.09.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
Cell senescence plays a key role in age-associated organ dysfunction, but the in vivo pathogenesis is largely unclear. Here, we generated a p16-CreERT2-tdTomato mouse model to analyze the in vivo characteristics of p16high cells at a single-cell level. We found tdTomato-positive p16high cells detectable in all organs, which were enriched with age. We also found that these cells failed to proliferate and had half-lives ranging from 2.6 to 4.2 months, depending on the tissue examined. Single-cell transcriptomics in the liver and kidneys revealed that p16high cells were present in various cell types, though most dominant in hepatic endothelium and in renal proximal and distal tubule epithelia, and that these cells exhibited heterogeneous senescence-associated phenotypes. Further, elimination of p16high cells ameliorated nonalcoholic steatohepatitis-related hepatic lipidosis and immune cell infiltration. Our new mouse model and single-cell analysis provide a powerful resource to enable the discovery of previously unidentified senescence functions in vivo.
Collapse
|
7
|
Wu D, Huang Q, Orban PC, Levings MK. Ectopic germline recombination activity of the widely used Foxp3-YFP-Cre mouse: a case report. Immunology 2019; 159:231-241. [PMID: 31713233 DOI: 10.1111/imm.13153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
Regulatory T (Treg) cell-specific deletion of a gene of interest is a procedure widely used to study mechanisms controlling Treg development, homeostasis and function. Accordingly, several transgenic mouse lines have been generated that bear the Cre recombinase under control of the Foxp3 promoter either as a random transgene insertion or knocked into the endogenous Foxp3 locus, with the Foxp3YFP-Cre strain of mice being one of the most widely used. In an attempt to generate Treg cells that lacked expression of the insulin receptor (Insr), we crossed Foxp3YFP-Cre mice with Insrfl/fl mice. Using a conventional two-band PCR genotyping method we found that offspring genotypes did not correspond to the expected Mendelian ratios. We therefore developed a quantitative PCR-based genotyping method to investigate possible ectopic recombination outside the Treg lineage. With this method we found that ~50% of the F1 -generation mice showed evidence of ectopic recombination and that ~10% of the F2 -generation mice had germline Cre recombination activity leading to a high frequency of offspring with global Insr deletion. Use of the quantitative PCR genotyping method enabled accurate selection of mice without ectopic recombination and only the desired Treg cell-specific Insr deletion. Our data highlight the need to use genotyping methods that allow for assessment of possible ectopic recombination driven by the Foxp3YFP-Cre allele, particularly when studying genes that are systemically expressed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Qing Huang
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Paul C Orban
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Cells exhibiting strong p16 INK4a promoter activation in vivo display features of senescence. Proc Natl Acad Sci U S A 2019; 116:2603-2611. [PMID: 30683717 PMCID: PMC6377452 DOI: 10.1073/pnas.1818313116] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The accumulation of senescent cells over a lifetime causes age-related pathologies; however, the inability to reliably identify senescent cells in vivo has hindered clinical efforts to employ this knowledge as a means to ameliorate or reverse aging. Here, we describe a reporter allele, p16tdTom, enabling the in vivo identification and isolation of cells featuring high-level activation of the p16INK4a promoter. Our findings provide an insight into the functional and molecular characteristics of p16INK4a-activated cells in vitro and in vivo. We show that such cells accumulate with aging or other models of injury, and that they exhibit clinically targetable features of cellular senescence. The activation of cellular senescence throughout the lifespan promotes tumor suppression, whereas the persistence of senescent cells contributes to aspects of aging. This theory has been limited, however, by an inability to identify and isolate individual senescent cells within an intact organism. Toward that end, we generated a murine reporter strain by “knocking-in” a fluorochrome, tandem-dimer Tomato (tdTom), into exon 1α of the p16INK4a locus. We used this allele (p16tdTom) for the enumeration, isolation, and characterization of individual p16INK4a-expressing cells (tdTom+). The half-life of the knocked-in transcript was shorter than that of the endogenous p16INK4a mRNA, and therefore reporter expression better correlated with p16INK4a promoter activation than p16INK4a transcript abundance. The frequency of tdTom+ cells increased with serial passage in cultured murine embryo fibroblasts from p16tdTom/+ mice. In adult mice, tdTom+ cells could be readily detected at low frequency in many tissues, and the frequency of these cells increased with aging. Using an in vivo model of peritoneal inflammation, we compared the phenotype of cells with or without activation of p16INK4a and found that tdTom+ macrophages exhibited some features of senescence, including reduced proliferation, senescence-associated β-galactosidase (SA-β-gal) activation, and increased mRNA expression of a subset of transcripts encoding factors involved in SA-secretory phenotype (SASP). These results indicate that cells harboring activation of the p16INK4a promoter accumulate with aging and inflammation in vivo, and display characteristics of senescence.
Collapse
|
9
|
Knittel G, Rehkämper T, Korovkina D, Liedgens P, Fritz C, Torgovnick A, Al-Baldawi Y, Al-Maarri M, Cun Y, Fedorchenko O, Riabinska A, Beleggia F, Nguyen PH, Wunderlich FT, Ortmann M, Montesinos-Rongen M, Tausch E, Stilgenbauer S, P Frenzel L, Herling M, Herling C, Bahlo J, Hallek M, Peifer M, Buettner R, Persigehl T, Reinhardt HC. Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia. Nat Commun 2017; 8:153. [PMID: 28751718 PMCID: PMC5532225 DOI: 10.1038/s41467-017-00210-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) remains an incurable disease. Two recurrent cytogenetic aberrations, namely del(17p), affecting TP53, and del(11q), affecting ATM, are associated with resistance against genotoxic chemotherapy (del17p) and poor outcome (del11q and del17p). Both del(17p) and del(11q) are also associated with inferior outcome to the novel targeted agents, such as the BTK inhibitor ibrutinib. Thus, even in the era of targeted therapies, CLL with alterations in the ATM/p53 pathway remains a clinical challenge. Here we generated two mouse models of Atm- and Trp53-deficient CLL. These animals display a significantly earlier disease onset and reduced overall survival, compared to controls. We employed these models in conjunction with transcriptome analyses following cyclophosphamide treatment to reveal that Atm deficiency is associated with an exquisite and genotype-specific sensitivity against PARP inhibition. Thus, we generate two aggressive CLL models and provide a preclinical rational for the use of PARP inhibitors in ATM-affected human CLL. ATM and TP53 mutations are associated with poor prognosis in chronic lymphocytic leukaemia (CLL). Here the authors generate mouse models of Tp53- and Atm-defective CLL mimicking the high-risk form of human disease and show that Atm-deficient CLL is sensitive to PARP1 inhibition.
Collapse
Affiliation(s)
- Gero Knittel
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany. .,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany. .,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany.
| | - Tim Rehkämper
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Darya Korovkina
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Paul Liedgens
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Christian Fritz
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Alessandro Torgovnick
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Yussor Al-Baldawi
- Department of Radiology, Medical Faculty, University Hospital of Cologne, Cologne, 50931, Germany
| | - Mona Al-Maarri
- Max-Planck-Institute for Metabolism Research, Cologne, 50931, Germany
| | - Yupeng Cun
- Department of Translational Genomics, University of Cologne, Cologne, 50931, Germany
| | - Oleg Fedorchenko
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Arina Riabinska
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Filippo Beleggia
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Phuong-Hien Nguyen
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | | | - Monika Ortmann
- Institute of Pathology, University Hospital of Cologne, Cologne, 50931, Germany
| | | | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, 89070, Germany
| | | | - Lukas P Frenzel
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Marco Herling
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, 50931, Germany
| | - Carmen Herling
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Jasmin Bahlo
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany
| | - Michael Hallek
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany.,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany
| | - Martin Peifer
- Department of Translational Genomics, University of Cologne, Cologne, 50931, Germany
| | - Reinhard Buettner
- Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, 50931, Germany
| | - Thorsten Persigehl
- Department of Radiology, Medical Faculty, University Hospital of Cologne, Cologne, 50931, Germany
| | - H Christian Reinhardt
- Clinic I of Internal Medicine, University Hospital of Cologne, Cologne, 50931, Germany. .,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany. .,Center of Integrated Oncology (CIO), University Hospital of Cologne, Cologne, 50931, Germany. .,Center of Molecular Medicine, University of Cologne, Cologne, 50931, Germany.
| |
Collapse
|
10
|
Lentucci C, Belkina AC, Cederquist CT, Chan M, Johnson HE, Prasad S, Lopacinski A, Nikolajczyk BS, Monti S, Snyder-Cappione J, Tanasa B, Cardamone MD, Perissi V. Inhibition of Ubc13-mediated Ubiquitination by GPS2 Regulates Multiple Stages of B Cell Development. J Biol Chem 2016; 292:2754-2772. [PMID: 28039360 DOI: 10.1074/jbc.m116.755132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Non-proteolytic ubiquitin signaling mediated by Lys63 ubiquitin chains plays a critical role in multiple pathways that are key to the development and activation of immune cells. Our previous work indicates that GPS2 (G-protein Pathway Suppressor 2) is a multifunctional protein regulating TNFα signaling and lipid metabolism in the adipose tissue through modulation of Lys63 ubiquitination events. However, the full extent of GPS2-mediated regulation of ubiquitination and the underlying molecular mechanisms are unknown. Here, we report that GPS2 is required for restricting the activation of TLR and BCR signaling pathways and the AKT/FOXO1 pathway in immune cells based on direct inhibition of Ubc13 enzymatic activity. Relevance of this regulatory strategy is confirmed in vivo by B cell-targeted deletion of GPS2, resulting in developmental defects at multiple stages of B cell differentiation. Together, these findings reveal that GPS2 genomic and non-genomic functions are critical for the development and cellular homeostasis of B cells.
Collapse
Affiliation(s)
| | - Anna C Belkina
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | | | | | | | | | | | | | | | - Jennifer Snyder-Cappione
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | - Bogdan Tanasa
- the Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305
| | | | | |
Collapse
|
11
|
Rocha-Martins M, Cavalheiro GR, Matos-Rodrigues GE, Martins RAP. From Gene Targeting to Genome Editing: Transgenic animals applications and beyond. AN ACAD BRAS CIENC 2016; 87:1323-48. [PMID: 26397828 DOI: 10.1590/0001-3765201520140710] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Genome modification technologies are powerful tools for molecular biology and related areas. Advances in animal transgenesis and genome editing technologies during the past three decades allowed systematic interrogation of gene function that can help model how the genome influences cellular physiology. Genetic engineering via homologous recombination (HR) has been the standard method to modify genomic sequences. Nevertheless, nuclease-guided genome editing methods that were developed recently, such as ZFN, TALEN and CRISPR/Cas, opened new perspectives for biomedical research. Here, we present a brief historical perspective of genome modification methods, focusing on transgenic mice models. Moreover, we describe how new techniques were discovered and improved, present the paradigm shifts and discuss their limitations and applications for biomedical research as well as possible future directions.
Collapse
Affiliation(s)
- Maurício Rocha-Martins
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Gabriel R Cavalheiro
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | | | - Rodrigo A P Martins
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BR
| |
Collapse
|
12
|
Beil J, Buch T. Generation of bacterial artificial chromosome (BAC) transgenic mice. Methods Mol Biol 2015; 1194:157-69. [PMID: 25064102 DOI: 10.1007/978-1-4939-1215-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Transgenic mice are among the most helpful tools to study the role of genes in physiological conditions. In this protocol, we describe the generation of bacterial artificial chromosome (BACs) constructs, which are used to express a gene of interest under a particular promoter. BACs as driver of transgenes have the advantage that a characterization of transcriptional control elements is unnecessary and the construct's size usually reduces position effects from random integration. In the following, we firstly explain in detail the amplification of the BAC, the generation of the targeting construct as well as the recombination by ET-cloning, and the analysis of the recombined clones by Southern blot analysis. Finally, we also describe the preparation of the BACs for oocyte injection. In total, the construction of such BAC transgenes needs around 6-8 weeks.
Collapse
Affiliation(s)
- Jane Beil
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, Trogerstr. 30, 81675, Munich, Germany
| | | |
Collapse
|
13
|
Heger K, Seidler B, Vahl JC, Schwartz C, Kober M, Klein S, Voehringer D, Saur D, Schmidt-Supprian M. CreER(T2) expression from within the c-Kit gene locus allows efficient inducible gene targeting in and ablation of mast cells. Eur J Immunol 2013; 44:296-306. [PMID: 24127407 DOI: 10.1002/eji.201343731] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/07/2013] [Accepted: 09/12/2013] [Indexed: 01/21/2023]
Abstract
Mast cells are abundantly situated at contact sites between the body and its environment, such as the skin and, especially during certain immune responses, at mucosal surfaces. They mediate allergic reactions and degrade toxins as well as venoms. However, their roles during innate and adaptive immune responses remain controversial and it is likely that major functions remain to be discovered. Recent developments in mast cell-specific conditional gene targeting in the mouse promise to enhance our understanding of these fascinating cells. To complete the genetic toolbox to study mast cell development, homeostasis and function, it is imperative to inducibly manipulate their gene expression. Here, we report the generation of a novel knock-in mouse line expressing a tamoxifen-inducible version of the Cre recombinase from within the endogenous c-Kit locus. We demonstrate highly efficient and specific inducible expression of a fluorescent reporter protein in mast cells both in vivo and in vitro. Furthermore, induction of diphtheria toxin A expression allowed selective and efficient ablation of mast cells at various anatomical locations, while other hematopoietic cells remain unaffected. This novel mouse strain will hence be very valuable to study mast cell homeostasis and how specific genes influence their functions in physiology and pathology.
Collapse
Affiliation(s)
- Klaus Heger
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Śledzińska A, Hemmers S, Mair F, Gorka O, Ruland J, Fairbairn L, Nissler A, Müller W, Waisman A, Becher B, Buch T. TGF-β signalling is required for CD4⁺ T cell homeostasis but dispensable for regulatory T cell function. PLoS Biol 2013; 11:e1001674. [PMID: 24115907 PMCID: PMC3792861 DOI: 10.1371/journal.pbio.1001674] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 08/23/2013] [Indexed: 12/16/2022] Open
Abstract
Signalling by the cytokine TGF-β regulates mature CD4+ T cell populations but is not involved in the survival and function of regulatory T cells. TGF-β is widely held to be critical for the maintenance and function of regulatory T (Treg) cells and thus peripheral tolerance. This is highlighted by constitutive ablation of TGF-β receptor (TR) during thymic development in mice, which leads to a lethal autoimmune syndrome. Here we describe that TGF-β–driven peripheral tolerance is not regulated by TGF-β signalling on mature CD4+ T cells. Inducible TR2 ablation specifically on CD4+ T cells did not result in a lethal autoinflammation. Transfer of these TR2-deficient CD4+ T cells to lymphopenic recipients resulted in colitis, but not overt autoimmunity. In contrast, thymic ablation of TR2 in combination with lymphopenia led to lethal multi-organ inflammation. Interestingly, deletion of TR2 on mature CD4+ T cells does not result in the collapse of the Treg cell population as observed in constitutive models. Instead, a pronounced enlargement of both regulatory and effector memory T cell pools was observed. This expansion is cell-intrinsic and seems to be caused by increased T cell receptor sensitivity independently of common gamma chain-dependent cytokine signals. The expression of Foxp3 and other regulatory T cells markers was not dependent on TGF-β signalling and the TR2–deficient Treg cells retained their suppressive function both in vitro and in vivo. In summary, absence of TGF-β signalling on mature CD4+ T cells is not responsible for breakdown of peripheral tolerance, but rather controls homeostasis of mature T cells in adult mice. TGF-β is a cytokine thought to be critical for the maintenance and function of tolerance in the immune system. In many studies the disruption of TGF-β signalling in CD4+ T cells (a type of white blood cell that coordinates immune responses) has resulted in autoimmune syndromes. We show here that the induced removal of this cytokine's receptor from these specialised blood cells results in an astonishingly mild outcome. Contrary to expectations, the number of regulatory T cells is actually increased, and we find that these cells are not dependent on TGF-β signalling. We also show that removal of the receptor from mature CD4+ T cells does not lead to lethal autoinflammation; only when we removed the receptor during development of the cells did we see the characteristic lethal multi-organ inflammation reported previously in constitutive models of TGF-β receptor ablation. In summary, our findings indicate that although TGF-β regulates maintenance of mature CD4+ T cells, its signals are dispensable for immune tolerance within this cell population.
Collapse
Affiliation(s)
- Anna Śledzińska
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Saskia Hemmers
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Florian Mair
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Oliver Gorka
- Clinical Chemistry, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Jürgen Ruland
- Clinical Chemistry, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Lynsey Fairbairn
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Germany
| | - Anja Nissler
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Werner Müller
- Department of Experimental Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Ari Waisman
- Institute for Genetics, University of Cologne, Cologne, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- * E-mail: (TB); (BB)
| | - Thorsten Buch
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Institute for Genetics, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Germany
- * E-mail: (TB); (BB)
| |
Collapse
|
15
|
Lin FY, Yang X. [Issues and solutions of conditional gene targeting]. YI CHUAN = HEREDITAS 2011; 33:469-484. [PMID: 21586394 DOI: 10.3724/sp.j.1005.2011.00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Conditional gene targeting, based on the site-specific recombination system such as Cre-loxP, plays a vital role in the study of gene functions and the generation of disease mouse models. It was always under consideration that there were problems in the Cre-loxP recombination system, such as illegal expression pattern of Cre transgene, variation of Cre recombination efficiency and toxicity of Cre recombinase, as well as the potential influences of genetic background, breeding strategy, experimental control and gene compensation. Oversights of these issues may have a profound influence on the accuracy of gene functional dissection and conditional gene targeting mice phenotypic interpretation. Accordingly, solutions should be adopted including delicate regulative control of temporal-spatial specific Cre expression, detailed detection of Cre recombination efficiency, reduction of Cre toxicity, simplification of mouse genetic background, optimization of breeding, setting up of proper control and combined conditional gene targeting.
Collapse
Affiliation(s)
- Fu-Yu Lin
- Genetic Laboratory of Development and Diseases, State Key Laboratory of Proteomics, Institute of Biotechnology, Beijing 100071, China.
| | | |
Collapse
|
16
|
He G, Ma Y, Chou SY, Li H, Yang C, Chuang JZ, Sung CH, Ding A. Role of CLIC4 in the host innate responses to bacterial lipopolysaccharide. Eur J Immunol 2011; 41:1221-30. [PMID: 21469130 DOI: 10.1002/eji.201041266] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/11/2011] [Accepted: 02/15/2011] [Indexed: 11/08/2022]
Abstract
Chloride intracellular channel (CLIC) 4 has diverse functions in membrane trafficking, apoptosis, angiogenesis and cell differentiation. CLIC4 is abundantly expressed in macrophages, but its role in innate immune functions is unclear. Here, we show that primary murine macrophages express increased amounts of CLIC4 after exposure to bacterial lipopolysaccharide (LPS). Endogenous CLIC4 level was significantly elevated in the brain, heart, lung, kidney, liver and spleen after LPS injection of mice. Stable macrophage lines overexpressing CLIC4 produced more TNF, IL-6, IL-12 and CCL5 than mock transfectants when exposed to LPS. To explore the role of CLIC4 in vivo, we generated CLIC4-null mice. These mice were protected from LPS-induced death, and had reduced serum levels of inflammatory cytokines. Upon infection with Listeria monocytogenes, CLIC4-deficient mice were impaired in their ability to clear infection, and their macrophages responded to Listeria by producing less inflammatory cytokines and chemokines than the WT controls. When challenged with LPS in vitro, deletion of clic4 gene had little effect on MAPK and NF-κB activation, but led to a reduced accumulation of phosphorylated interferon response factor 3 (IRF3) within macrophages. Conversely, overexpression of CLIC4 enhanced LPS-mediated IRF3. Thus, these findings suggest that CLIC4 is an LPS-induced product that can serve as a positive regulator of LPS signaling.
Collapse
Affiliation(s)
- Guoan He
- Department of Microbiology and Immunology, Weill Cornell Medical College, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Johansson T, Broll I, Frenz T, Hemmers S, Becher B, Zeilhofer HU, Buch T. Building a zoo of mice for genetic analyses: a comprehensive protocol for the rapid generation of BAC transgenic mice. Genesis 2010; 48:264-80. [PMID: 20143345 DOI: 10.1002/dvg.20612] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transgenic mice are highly valuable tools for biological research as they allow cell type-specific expression of functionally instrumental genes. In this protocol, the generation of bacterial artificial chromosome (BAC) transgenic constructs is described. We give an overview of different transgenic inserts, such as fluorescent proteins (alone or in combination with Cre variants), diphtheria toxin receptor, lacZ, and light-activated ion channels. The most reliable and versatile approach to express these genes is by using BACs, which allow "highjacking" of the expression pattern of a gene without characterizing its transcriptional control elements. Here, we describe the necessary cloning techniques compared with conventional transgenesis. With the provided "toolbox" of already available transgene constructs, the generation of the BAC transgenes is made easy and rapid. We provide a comprehensive outline how to insert the different transgenes into a chosen BAC by either ET cloning or recombineering. We also describe in detail the methods to identify the correct insertion and the integrity of the final BAC construct, and finally, the preparation of the BAC DNA for oocyte injection is described.
Collapse
Affiliation(s)
- Torbjörn Johansson
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Heyer J, Kwong LN, Lowe SW, Chin L. Non-germline genetically engineered mouse models for translational cancer research. Nat Rev Cancer 2010; 10:470-80. [PMID: 20574449 PMCID: PMC4602412 DOI: 10.1038/nrc2877] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetically engineered mouse models (GEMMs) of cancer have affected virtually all areas of cancer research. However, the accelerated discovery of new cancer genes emerging from large-scale cancer genomics and new chemical entities pouring from the drug discovery pipeline have strained the capacity of traditional germline mouse models to provide crucial insights. This Review introduces new approaches to modelling cancer, with emphasis on a growing collection of non-germline GEMMs (nGEMMs). These offer flexibility, speed and uniformity at reduced costs, thus paving the way for much needed throughput and practical preclinical therapeutic testing models.
Collapse
Affiliation(s)
- Joerg Heyer
- AVEO Pharmaceuticals, 75 Sidney Street, 4th floor, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
19
|
Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T, Ma X, Ma Y, Iadecola C, Beal MF, Nathan C, Ding A. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. ACTA ACUST UNITED AC 2009; 207:117-28. [PMID: 20026663 PMCID: PMC2812536 DOI: 10.1084/jem.20091568] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Progranulin (PGRN) is a widely expressed protein involved in diverse biological processes. Haploinsufficiency of PGRN in the human causes tau-negative, ubiquitin-positive frontotemporal dementia (FTD). However, the mechanisms are unknown. To explore the role of PGRN in vivo, we generated PGRN-deficient mice. Macrophages from these mice released less interleukin-10 and more inflammatory cytokines than wild type (WT) when exposed to bacterial lipopolysaccharide. PGRN-deficient mice failed to clear Listeria monocytogenes infection as quickly as WT and allowed bacteria to proliferate in the brain, with correspondingly greater inflammation than in WT. PGRN-deficient macrophages and microglia were cytotoxic to hippocampal cells in vitro, and PGRN-deficient hippocampal slices were hypersusceptible to deprivation of oxygen and glucose. With age, brains of PGRN-deficient mice displayed greater activation of microglia and astrocytes than WT, and their hippocampal and thalamic neurons accumulated cytosolic phosphorylated transactivation response element DNA binding protein-43. Thus, PGRN is a key regulator of inflammation and plays critical roles in both host defense and neuronal integrity. FTD associated with PGRN insufficiency may result from many years of reduced neutrotrophic support together with cumulative damage in association with dysregulated inflammation.
Collapse
Affiliation(s)
- Fangfang Yin
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|