1
|
Zhou B, Cao H, Wu Q, Mao K, Yang X, Su J, Zhang H. Agronomic and Genetic Strategies to Enhance Selenium Accumulation in Crops and Their Influence on Quality. Foods 2023; 12:4442. [PMID: 38137246 PMCID: PMC10742783 DOI: 10.3390/foods12244442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium (Se) is an essential trace element that plays a crucial role in maintaining the health of humans, animals, and certain plants. It is extensively present throughout the Earth's crust and is absorbed by crops in the form of selenates and selenite, eventually entering the food chain. Se biofortification is an agricultural process that employs agronomic and genetic strategies. Its goal is to enhance the mechanisms of crop uptake and the accumulation of exogenous Se, resulting in the production of crops enriched with Se. This process ultimately contributes to promoting human health. Agronomic strategies in Se biofortification aim to enhance the availability of exogenous Se in crops. Concurrently, genetic strategies focus on improving a crop's capacity to uptake, transport, and accumulate Se. Early research primarily concentrated on optimizing Se biofortification methods, improving Se fertilizer efficiency, and enhancing Se content in crops. In recent years, there has been a growing realization that Se can effectively enhance crop growth and increase crop yield, thereby contributing to alleviating food shortages. Additionally, Se has been found to promote the accumulation of macro-nutrients, antioxidants, and beneficial mineral elements in crops. The supplementation of Se biofortified foods is gradually emerging as an effective approach for promoting human dietary health and alleviating hidden hunger. Therefore, in this paper, we provide a comprehensive summary of the Se biofortification conducted over the past decade, mainly focusing on Se accumulation in crops and its impact on crop quality. We discuss various Se biofortification strategies, with an emphasis on the impact of Se fertilizer strategies on crop Se accumulation and their underlying mechanisms. Furthermore, we highlight Se's role in enhancing crop quality and offer perspective on Se biofortification in crop improvement, guiding future mechanistic explorations and applications of Se biofortification.
Collapse
Affiliation(s)
- Bingqi Zhou
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxia Su
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
| |
Collapse
|
2
|
Zhang L, Chu C. Selenium Uptake, Transport, Metabolism, Reutilization, and Biofortification in Rice. RICE (NEW YORK, N.Y.) 2022; 15:30. [PMID: 35701545 PMCID: PMC9198118 DOI: 10.1186/s12284-022-00572-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/29/2022] [Indexed: 05/13/2023]
Abstract
Selenium (Se) is an essential trace element for humans and other animals. The human body mainly acquires Se from plant foods, especially cereal grains. Rice is the staple food for more than half of the world's population. Increasing the Se concentration of rice grains can increase the average human dietary Se intake. This review summarizes recent advances in the molecular mechanisms of Se uptake, transport, subcellular distribution, retranslocation, volatilization, and Se-containing protein degradation in plants, especially rice. The strategies for improving Se concentration in rice grains by increasing Se accumulation, reducing Se volatilization, and optimizing Se form were proposed, which provide new insight into Se biofortification in rice by improving the utilization efficiency of Se.
Collapse
Affiliation(s)
- Lianhe Zhang
- Luoyang Key Laboratory of Plant Nutrition and Environmental Ecology, Agricultural College, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Chengcai Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture and Technology, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Influence of Selenium Biofortification on the Growth and Bioactive Metabolites of Ganoderma lucidum. Foods 2021; 10:foods10081860. [PMID: 34441637 PMCID: PMC8391904 DOI: 10.3390/foods10081860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Selenium biofortification of edible and medicinal mushrooms is an effective way to produce selenium-enriched food supplements. Ganoderma lucidum is the typical one with excellent biological activity. This study investigated G. lucidum growth and bioactive metabolites alterations during liquid culture with different concentrations of selenite. Low selenium levels did not affect growth and mycelia morphology, whereas high selenium levels negatively influenced growth, dramatically decreased biomass, caused nucleic acid and protein leakage, damaged cell walls and membranes, and resulted in indicators such as degraded cells, a red color, and an unpleasant odor. Through headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) analysis, ten volatile Se compounds were identified in G. lucidum with 200 ppm selenite, which led to an odor change, whereas only three with 50 ppm selenite. SeMet was the major selenoamino acid in the 50 ppm selenite group by high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), but more MeSeCys was produced with 200 ppm selenite. Polysaccharide yields were promoted and inhibited with 50 and 200 ppm selenite, respectively. These results provide comprehensive insights into the effects of selenite on G. lucidum in liquid culture and are beneficial for functional selenium-enriched mushroom production and improving nutritive values.
Collapse
|
4
|
Raina M, Sharma A, Nazir M, Kumari P, Rustagi A, Hami A, Bhau BS, Zargar SM, Kumar D. Exploring the new dimensions of selenium research to understand the underlying mechanism of its uptake, translocation, and accumulation. PHYSIOLOGIA PLANTARUM 2021; 171:882-895. [PMID: 33179766 DOI: 10.1111/ppl.13275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) is a vital mineral for both plants and animals. It is widely distributed on the earth's crust and is taken up by the plants as selenite or selenate. Plants substantially vary in their physiological response to Se. The amount of Se in edible plants is genetically controlled. Its availability can be determined by measuring its phytoavailability in soil. The low concentration of Se in plants can help them in combating stress, whereas higher concentrations can be detrimental to plant health and in most cases it is toxic. Thus, solving the double-edged sword problem of nutritional Se deficiency and its elevated concentrations in environment requires a better understanding of Se uptake and metabolism in plants. The studies on Se uptake and metabolism can help in genetic biofortification of Se in plants and also assist in phytoremediation. Moreover, Se uptake and transport, especially biochemical pathways of assimilation and incorporation into proteins, offers striking mechanisms of toxicity and tolerance. These developments have led to a revival of Se research in higher plants with significant break throughs being made in the previous years. This review explores the new dimensions of Se research with major emphasis on key research events related to Se undertaken in last few years. Further, we also discussed future possibilities in Se research for crop improvement.
Collapse
Affiliation(s)
- Meenakshi Raina
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Akanksha Sharma
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Muslima Nazir
- Center of Research for Development (CORD), University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Punam Kumari
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
5
|
Chen M, Zeng L, Luo X, Mehboob MZ, Ao T, Lang M. Identification and functional characterization of a novel selenocysteine methyltransferase from Brassica juncea L. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6401-6416. [PMID: 31504785 DOI: 10.1093/jxb/erz390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/09/2019] [Indexed: 05/13/2023]
Abstract
Organic selenium (Se), specifically Se-methylselenocysteine (MeSeCys), has demonstrated potential effects in human disease prevention including cancer and the emerging ameliorating effect on Alzheimer's disease. In plants, selenocysteine methyltransferase (SMT) is the key enzyme responsible for MeSeCys formation. In this study, we first isolated a novel SMT gene, designated as BjSMT, from the genome of a known Se accumulator, Brassica juncea L. BjSMT shows high sequence (amino acid) similarity with its orthologues from Brassica napus and Brassica oleracea var. oleracea, which can use homocysteine (HoCys) and selenocysteine (SeCys) as substrates. Similar to its closest homologues, BjSMT also possesses a conserved Thr187 which is involved in transferring a methyl group to HoCys by donating a hydrogen bond, suggesting that BjSMT can methylate both HoCys and SeCys substrates. Using quantitative real-time PCR (qRT-PCR) technology and BjSMT-transformed tobacco (Nicotiana tabacum) plants, we observed how BjSMT responds to selenite [Se(IV)] and selenate [Se(VI)] stress in B. juncea, and how the phenotypes of BjSMT-overexpressing tobacco cultured under selenite stress are affected. BjSMT expression was nearly undetectable in the B. juncea plant without Se exposure, but in the plant leaves it can be rapidly and significantly up-regulated upon a low level of selenite stress, and enormously up-regulated upon selenate treatment. Overexpression of BjSMT in tobacco substantially enhanced tolerance to selenite stress manifested as significantly higher fresh weight, plant height, and chlorophyll content than control plants. In addition, transgenic plants exhibited low glutathione peroxidase activity in response to a lower dose of selenite stress (with a higher dose of selenite stress resulting in a high activity response) compared with the controls. Importantly, the BjSMT-transformed tobacco plants accumulated a high level of Se upon selenite stress, and the plants also had significantly increased MeSeCys production potential in their leaves. This first study of B. juncea SMT demonstrates its potential applications in crop MeSeCys biofortification and phytoremediation of Se pollution.
Collapse
Affiliation(s)
- Meng Chen
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Liu Zeng
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Xiangguang Luo
- College of Life Science, Hebei Agricultural University, Baoding, China
| | | | - Tegenbaiyin Ao
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Minglin Lang
- College of Life Science, Hebei Agricultural University, Baoding, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
McKenzie MJ, Chen RKY, Leung S, Joshi S, Rippon PE, Joyce NI, McManus MT. Selenium treatment differentially affects sulfur metabolism in high and low glucosinolate producing cultivars of broccoli (Brassica oleracea L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:176-186. [PMID: 29126060 DOI: 10.1016/j.plaphy.2017.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 05/21/2023]
Abstract
The effect of selenium (Se) application on the sulfur (S)-rich glucosinolate (GSL)-containing plant, broccoli (Brassica oleracea L. var. italica) was examined with a view to producing germplasm with increased Se and GSL content for human health, and to understanding the influence of Se on the regulation of GSL production. Two cultivars differing in GSL content were compared. Increased Se application resulted in an increase in Se uptake in planta, but no significant change in total S or total GSL content in either cultivar. Also no significant change was observed in the activity of ATP sulfurylase (ATPS, EC 2.7.7.4) or O-acetylserine(thiol) lyase (OASTL, EC 2.5.1.47) with increased Se application. However, in the first investigation of APS kinase (APSK, EC 2.7.1.25) expression in response to Se fertilisation, an increase in transcript abundance of one variant of APS kinase 1 (BoAPSK1A) was observed in both cultivars, and an increase in BoAPSK2 transcript abundance was observed in the low GSL producing cultivar. A mechanism by which increased APSK transcription may provide a means of controlling the content of S-containing compounds, including GSLs, following Se uptake is proposed.
Collapse
Affiliation(s)
- Marian J McKenzie
- New Zealand Institute for Plant & Food Research Ltd., Palmerston North, Private Bag 11600, Manawatu Mail Centre, Palmerston North, 4442, New Zealand.
| | - Ronan K Y Chen
- New Zealand Institute for Plant & Food Research Ltd., Palmerston North, Private Bag 11600, Manawatu Mail Centre, Palmerston North, 4442, New Zealand
| | - Susanna Leung
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Srishti Joshi
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Paula E Rippon
- New Zealand Institute for Plant & Food Research Ltd., Lincoln, Private Bag 4704, Christchurch Mail Centre, Christchurch, 8140, New Zealand
| | - Nigel I Joyce
- New Zealand Institute for Plant & Food Research Ltd., Lincoln, Private Bag 4704, Christchurch Mail Centre, Christchurch, 8140, New Zealand
| | - Michael T McManus
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
7
|
Wiesner-Reinhold M, Schreiner M, Baldermann S, Schwarz D, Hanschen FS, Kipp AP, Rowan DD, Bentley-Hewitt KL, McKenzie MJ. Mechanisms of Selenium Enrichment and Measurement in Brassicaceous Vegetables, and Their Application to Human Health. FRONTIERS IN PLANT SCIENCE 2017; 8:1365. [PMID: 28824693 PMCID: PMC5540907 DOI: 10.3389/fpls.2017.01365] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/21/2017] [Indexed: 05/04/2023]
Abstract
Selenium (Se) is an essential micronutrient for human health. Se deficiency affects hundreds of millions of people worldwide, particularly in developing countries, and there is increasing awareness that suboptimal supply of Se can also negatively affect human health. Selenium enters the diet primarily through the ingestion of plant and animal products. Although, plants are not dependent on Se they take it up from the soil through the sulphur (S) uptake and assimilation pathways. Therefore, geographic differences in the availability of soil Se and agricultural practices have a profound influence on the Se content of many foods, and there are increasing efforts to biofortify crop plants with Se. Plants from the Brassicales are of particular interest as they accumulate and synthesize Se into forms with additional health benefits, such as methylselenocysteine (MeSeCys). The Brassicaceae are also well-known to produce the glucosinolates; S-containing compounds with demonstrated human health value. Furthermore, the recent discovery of the selenoglucosinolates in the Brassicaceae raises questions regarding their potential bioefficacy. In this review we focus on Se uptake and metabolism in the Brassicaceae in the context of human health, particularly cancer prevention and immunity. We investigate the close relationship between Se and S metabolism in this plant family, with particular emphasis on the selenoglucosinolates, and consider the methodologies available for identifying and quantifying further novel Se-containing compounds in plants. Finally, we summarize the research of multiple groups investigating biofortification of the Brassicaceae and discuss which approaches might be most successful for supplying Se deficient populations in the future.
Collapse
Affiliation(s)
- Melanie Wiesner-Reinhold
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
- *Correspondence: Melanie Wiesner-Reinhold
| | - Monika Schreiner
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
| | - Susanne Baldermann
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
- Food Chemistry, Institute of Nutritional Science, University of PotsdamNuthethal, Germany
| | - Dietmar Schwarz
- Functional Plant Biology, Leibniz Institute of Vegetable and Ornamental CropGrossbeeren, Germany
| | - Franziska S. Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
| | - Anna P. Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University JenaJena, Germany
| | - Daryl D. Rowan
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| | - Kerry L. Bentley-Hewitt
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| | - Marian J. McKenzie
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| |
Collapse
|
8
|
White PJ. Selenium accumulation by plants. ANNALS OF BOTANY 2016; 117:217-35. [PMID: 26718221 PMCID: PMC4724052 DOI: 10.1093/aob/mcv180] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 10/19/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. SCOPE This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. CONCLUSIONS The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.
Collapse
Affiliation(s)
- Philip J White
- Ecological Sciences Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK and Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Mechanisms of the Selenium Tolerance of theArabidopsis thalianaKnockout Mutant of Sulfate Transporter SULTR1;2. Biosci Biotechnol Biochem 2014; 76:993-8. [DOI: 10.1271/bbb.111000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Matich AJ, McKenzie MJ, Lill RE, Brummell DA, McGhie TK, Chen RKY, Rowan DD. Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate. PHYTOCHEMISTRY 2012; 75:140-52. [PMID: 22197453 DOI: 10.1016/j.phytochem.2011.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/25/2011] [Accepted: 11/30/2011] [Indexed: 05/08/2023]
Abstract
Glucosinolates are sulphur-containing glycosides found in many Brassica spp. that are important because their aglycone hydrolysis products protect the plant from herbivores and exhibit anti-cancer properties in humans. Recently, synthetically produced selenium analogues have been shown to be more effective at suppressing cancers than their sulphur counterparts. Although selenium is incorporated into a number of Brassica amino acids and peptides, firm evidence has yet to be presented for the presence of selenium in the glucosinolates and their aglycones in planta. In this study broccoli and cauliflower florets, and roots of forage rape, all obtained from plants treated with sodium selenate, were analysed for the presence of organoselenides. GC-MS analysis of pentane/ether extracts identified six organoselenium compounds including selenium analogues of known myrosinase-derived Brassica volatiles: 4-(methylseleno)butanenitrile, 5-(methylseleno)pentanenitrile, 3-(methylseleno)propylisothiocyanate, 4-(methylseleno)butylisothiocyanate, and 5-(methylseleno)pentylisothiocyanate. LC-MS analysis of ethanolic extracts identified three selenoglucosinolates: 3-(methylseleno)propylglucosinolate (glucoselenoiberverin), 4-(methylseleno)butylglucosinolate (glucoselenoerucin), and 5-(methylseleno)pentylglucosinolate (glucoselenoberteroin). LC-MS/MS analysis was used to locate the position of the selenium atom in the selenoglucosinolate and indicates preferential incorporation of selenium via selenomethionine into the methylselenyl moiety rather than into the sulphate or β-thioglucose groups. In forage rape, selenoglucosinolates and their aglycones (mainly isothiocyanates), occurred at concentrations up to 10% and 70%, respectively, of their sulphur analogues. In broccoli, concentrations of the selenoglucosinolates and their aglycones (mainly nitriles) were up to 60% and 1300%, respectively of their sulphur analogues. These findings indicate the potential for the incorporation of high levels of selenium into Brassica glucosinolates.
Collapse
Affiliation(s)
- Adam J Matich
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Private Bag 11600, Palmerston North 4442, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
11
|
Hung CY, Holliday BM, Kaur H, Yadav R, Kittur FS, Xie J. Identification and characterization of selenate- and selenite-responsive genes in a Se-hyperaccumulator Astragalus racemosus. Mol Biol Rep 2012; 39:7635-46. [PMID: 22362314 DOI: 10.1007/s11033-012-1598-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 01/31/2012] [Indexed: 01/03/2023]
Abstract
Plants with capacity to accumulate high levels of selenium (Se) are desired for phytoremediation and biofortification. Plants of genus Astragalus accumulate and tolerate high levels of Se, but their slow growth, low biomass and non-edible properties limit their direct utilization. Genetic engineering may be an alternative way to produce edible or high biomass Se-accumulating plants. The first step towards this goal is to isolate genes that are responsible for Se accumulation and tolerance. Later, these genes can be introduced into other edible and high biomass plants. In the present study, we applied fluorescent differential display to analyze the transcript profile of Se-hyperaccumulator A. racemosus treated with 20 μM selenate (K(2)SeO(4)) for 2 weeks. Among 125 identified Se-responsive candidate genes, the expression levels of nine were induced or suppressed more than twofold by selenate treatment in two independent experiments while 14 showed such changes when treated with selenite (K(2)SeO(3)). Six of them were found to respond to both selenate and selenite treatments. A novel gene CEJ367 was found to be highly induced by both selenate (1,920-fold) and selenite (579-fold). Root- or shoot-preferential expression of nine genes was further investigated. These identified genes may allow us to create Se-enriched transgenic plants.
Collapse
Affiliation(s)
- Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites.
Collapse
|
13
|
Brummell DA, Watson LM, Pathirana R, Joyce NI, West PJ, Hunter DA, McKenzie MJ. Biofortification of tomato (Solanum lycopersicum) fruit with the anticancer compound methylselenocysteine using a selenocysteine methyltransferase from a selenium hyperaccumulator. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10987-94. [PMID: 21942920 DOI: 10.1021/jf202583f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Methylselenocysteine (MeSeCys) is an amino acid derivative that possesses potent anticancer activity in animals. Plants that can tolerate growth on soils with high Se content, known as Se hyperaccumulators, do so by converting inorganic Se to MeSeCys by the enzyme selenocysteine methyltransferase (SMT). A cDNA encoding the SMT from a Se hyperaccumulator was overexpressed in tomato (Solanum lycopersicum). Transgenic plants were provided with selenite or selenate to the roots during fruit development, and liquid chromatography-mass spectrometry was used to show that MeSeCys accumulated in the fruit but not in the leaves. Depending on the transgenic line and Se treatment, up to 16% of the total Se in the fruit was present as MeSeCys. MeSeCys was produced more effectively from selenite on a percentage conversion basis, but greater accumulation of MeSeCys could be achieved from selenate due to its better translocation from the roots. MeSeCys was heat stable and survived processing of the fruit to tomato juice.
Collapse
Affiliation(s)
- David A Brummell
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
14
|
Matich AJ, McKenzie MJ, Brummell DA, Rowan DD. Organoselenides from Nicotiana tabacum genetically modified to accumulate selenium. PHYTOCHEMISTRY 2009; 70:1098-1106. [PMID: 19570557 DOI: 10.1016/j.phytochem.2009.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/28/2009] [Accepted: 06/01/2009] [Indexed: 05/08/2023]
Abstract
Nicotiana tabacum L. (tobacco) plants were transformed to overexpress a selenocysteine methyltransferase gene from the selenium hyperaccumulator Astragalus bisulcatus (Hook.) A. Gray (two-grooved milkvetch), and an ATP-sulfurylase gene from Brassica oleracea L. var. italica (broccoli). Solvent extraction of leaves harvested from plants treated with selenate revealed five selenium-containing compounds, of which four were identified by chemical synthesis as 2-(methylseleno)acetaldehyde, 2,2-bis(methylseleno)acetaldehyde, 4-(methylseleno)-(2E)-nonenal, and 4-(methylseleno)-(2E,6Z)-nonadienal. These four compounds have not previously been reported in nature.
Collapse
Affiliation(s)
- Adam J Matich
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Marian J McKenzie
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Private Bag 11600, Palmerston North 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Private Bag 11600, Palmerston North 4442, New Zealand
| | - Daryl D Rowan
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Private Bag 11600, Palmerston North 4442, New Zealand
| |
Collapse
|