1
|
Nahirñak V, Almasia NI, González MN, Massa GA, Décima Oneto CA, Feingold SE, Hopp HE, Vazquez Rovere C. State of the Art of Genetic Engineering in Potato: From the First Report to Its Future Potential. FRONTIERS IN PLANT SCIENCE 2022; 12:768233. [PMID: 35082806 PMCID: PMC8784693 DOI: 10.3389/fpls.2021.768233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Potato (Solanum tuberosum L.) is a crop of world importance that produces tubers of high nutritional quality. It is considered one of the promising crops to overcome the challenges of poverty and hunger worldwide. However, it is exposed to different biotic and abiotic stresses that can cause significant losses in production. Thus, potato is a candidate of special relevance for improvements through conventional breeding and biotechnology. Since conventional breeding is time-consuming and challenging, genetic engineering provides the opportunity to introduce/switch-off genes of interest without altering the allelic combination that characterize successful commercial cultivars or to induce targeted sequence modifications by New Breeding Techniques. There is a variety of methods for potato improvement via genetic transformation. Most of them incorporate genes of interest into the nuclear genome; nevertheless, the development of plastid transformation protocols broadened the available approaches for potato breeding. Although all methods have their advantages and disadvantages, Agrobacterium-mediated transformation is the most used approach. Alternative methods such as particle bombardment, protoplast transfection with polyethylene glycol and microinjection are also effective. Independently of the DNA delivery approach, critical steps for a successful transformation are a rapid and efficient regeneration protocol and a selection system. Several critical factors affect the transformation efficiency: vector type, insert size, Agrobacterium strain, explant type, composition of the subculture media, selective agent, among others. Moreover, transient or stable transformation, constitutive or inducible promoters, antibiotic/herbicide resistance or marker-free strategies can be considered. Although great efforts have been made to optimize all the parameters, potato transformation protocols are highly genotype-dependent. Genome editing technologies provide promising tools in genetic engineering allowing precise modification of targeted sequences. Interestingly, transient expression of genome editing components in potato protoplasts was reported to generate edited plants without the integration of any foreign DNA, which is a valuable aspect from both a scientific and a regulatory perspective. In this review, current challenges and opportunities concerning potato genetic engineering strategies developed to date are discussed. We describe their critical parameters and constrains, and the potential application of the available tools for functional analyses or biotechnological purposes. Public concerns and safety issues are also addressed.
Collapse
Affiliation(s)
- Vanesa Nahirñak
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Natalia I. Almasia
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Matías N. González
- Laboratorio de Agrobiotecnología, IPADS (INTA – CONICET), Balcarce, Argentina
| | - Gabriela A. Massa
- Laboratorio de Agrobiotecnología, IPADS (INTA – CONICET), Balcarce, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Cecilia A. Décima Oneto
- Laboratorio de Agrobiotecnología, IPADS (INTA – CONICET), Balcarce, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Sergio E. Feingold
- Laboratorio de Agrobiotecnología, IPADS (INTA – CONICET), Balcarce, Argentina
| | - Horacio E. Hopp
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Vazquez Rovere
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| |
Collapse
|
2
|
Kaur A, Guleria S, Reddy MS, Kumar A. A robust genetic transformation protocol to obtain transgenic shoots of Solanum tuberosum L. cultivar 'Kufri Chipsona 1'. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:367-377. [PMID: 32158141 PMCID: PMC7036391 DOI: 10.1007/s12298-019-00747-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The genetic transformation of plants is an important biotechnological tool used for crop improvement for many decades. The present study was focussed to investigate various factors affecting genetic transformation of potato cultivar 'Kufri Chipsona 1'. It was observed that explants pre-cultured for 2 days on MS2 medium (MS medium containing 10 µM silver nitrate, 10 µM BA, 15 µM GA3), injured with a surgical blade and co-cultivated with Agrobacterium tumefaciens strain EHA105 [O.D600 (0.6)] for 2 days results in maximum transient β-glucuronidase (GUS) expression. The addition of 100 µM acetosyringone in MS2 medium also increased rate of transient GUS expression in both the explants. Clumps of putative transgenic shoots were regenerated using the optimised culture conditions from leaf and internodal explants. The stable integration of T-DNA was established using histochemical staining for GUS and amplification of DNA fragment specific to nptII and uidA genes. Within the clumps, around 67.85% of shoots showed uniform GUS expression in all the tissues and about 32.15% shoots show intermittent GUS expression establishing chimeric nature. Uniform GUS staining of the tissue was used as initial marker of non-chimeric transgenic shoots. Quantitative expression of nptII transgene was found to be directly proportional to uniformity of GUS staining in transgenic shoots. The present investigation indicated that manipulation of culture conditions and the medium composition may help to get transgenic shoots with uniform expression of transgene in all the tissues of potato cultivar 'Kufri Chipsona 1'.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| | - M. Sudhakara Reddy
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| | - Anil Kumar
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001 India
| |
Collapse
|
3
|
Lacroix B, Citovsky V. Pathways of DNA Transfer to Plants from Agrobacterium tumefaciens and Related Bacterial Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:231-251. [PMID: 31226020 PMCID: PMC6717549 DOI: 10.1146/annurev-phyto-082718-100101] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilize different pathways for transferring DNA, which likely reflects the very wide host range of Agrobacterium. Furthermore, closely related bacterial species, such as rhizobia, are able to transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non-Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| |
Collapse
|
4
|
Zuniga-Soto E, Fitzpatrick DA, Doohan FM, Mullins E. Insights into the transcriptomic response of the plant engineering bacterium Ensifer adhaerens OV14 during transformation. Sci Rep 2019; 9:10344. [PMID: 31316079 PMCID: PMC6637203 DOI: 10.1038/s41598-019-44648-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
The ability to engineer plant genomes has been primarily driven by the soil bacterium Agrobacterium tumefaciens but recently the potential of alternative rhizobia such as Rhizobium etli and Ensifer adhaerens OV14, the latter of which supports Ensifer Mediated Transformation (EMT) has been reported. Surprisingly, a knowledge deficit exists in regards to understanding the whole genome processes underway in plant transforming bacteria, irrespective of the species. To begin to address the issue, we undertook a temporal RNAseq-based profiling study of E. adhaerens OV14 in the presence/absence of Arabidopsis thaliana tissues. Following co-cultivation with root tissues, 2333 differentially expressed genes (DEGs) were noted. Meta-analysis of the RNAseq data sets identified a clear shift from plasmid-derived gene expression to chromosomal-based transcription within the early stages of bacterium-plant co-cultivation. During this time, the number of differentially expressed prokaryotic genes increased steadily out to 7 days co-cultivation, a time at which optimum rates of transformation were observed. Gene ontology evaluations indicated a role for both chromosomal and plasmid-based gene families linked specifically with quorum sensing, flagellin production and biofilm formation in the process of EMT. Transcriptional evaluation of vir genes, housed on the pCAMBIA 5105 plasmid in E. adhaerens OV14 confirmed the ability of E. adhaerens OV14 to perceive and activate its transcriptome in response to the presence of 200 µM of acetosyringone. Significantly, this is the first study to characterise the whole transcriptomic response of a plant engineering bacterium in the presence of plant tissues and provides a novel insight into prokaryotic genetic processes that support T-DNA transfer.
Collapse
Affiliation(s)
- Evelyn Zuniga-Soto
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Fitzpatrick
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Fiona M Doohan
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ewen Mullins
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland.
| |
Collapse
|
5
|
Rathore DS, Zuniga-Soto E, Mullins E. Ensifer-Mediated Transformation (EMT) of Rice (Monocot) and Oilseed Rape (Dicot). Methods Mol Biol 2019; 1864:37-48. [PMID: 30415327 DOI: 10.1007/978-1-4939-8778-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ensifer adhaerens OV14 underpins the successful crop transformation protocol, termed Ensifer-mediated transformation (EMT). The adaptability and efficiency of EMT technology to successfully transform both monocot and dicots have been previously reported. To facilitate community users' transition to EMT, the modified rice and oilseed rape plants generated in this work were developed using EMT protocols that were grounded in standard Agrobacterium-mediated transformation (AMT) processes. Therefore, this chapter describes simple yet crucial steps involved in transferring the use of EMT of rice and oilseed rape for generation of fertile and independent transgenic lines.
Collapse
Affiliation(s)
- Dheeraj Singh Rathore
- Department of Crop Science, Teagasc, Oak Park, Carlow R93 XE12, Co. Carlow, Republic of Ireland
| | - Evelyn Zuniga-Soto
- Department of Crop Science, Teagasc, Oak Park, Carlow R93 XE12, Co. Carlow, Republic of Ireland
| | - Ewen Mullins
- Department of Crop Science, Teagasc, Oak Park, Carlow R93 XE12, Co. Carlow, Republic of Ireland.
| |
Collapse
|
6
|
Effective removal of a range of Ti/Ri plasmids using a pBBR1-type vector having a repABC operon and a lux reporter system. Appl Microbiol Biotechnol 2018; 102:1823-1836. [PMID: 29318333 DOI: 10.1007/s00253-017-8721-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/09/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Ti and Ri plasmids of pathogenic Agrobacterium strains are stably maintained by the function of a repABC operon and have been classified into four incompatibility groups, namely, incRh1, incRh2, incRh3, and incRh4. Removal of these plasmids from their bacterial cells is an important step in determining strain-specific virulence characteristics and to construct strains useful for transformation. Here, we developed two powerful tools to improve this process. We first established a reporter system to detect the presence and absence of Ti/Ri plasmids in cells by using an acetosyringone (AS)-inducible promoter of the Ti2 small RNA and luxAB from Vibrio harveyi. This system distinguished a Ti/Ri plasmid-free cell colony among plasmid-harboring cell colonies by causing the latter colonies to emit light in response to AS. We then constructed new "Ti/Ri eviction plasmids," each of which carries a repABC from one of four Ti/Ri plasmids that belonged to incRh1, incRh2, incRh3, and incRh4 groups in the suicidal plasmid pK18mobsacB and in a broad-host-range pBBR1 vector. Introduction of the new eviction plasmids into Agrobacterium cells harboring the corresponding Ti/Ri plasmids led to Ti/Ri plasmid-free cells in every incRh group. The Ti/Ri eviction was more effective by plasmids with the pBBR1 backbone than by those with the pK18mobsacB backbone. Furthermore, the highly stable cryptic plasmid pAtC58 in A. tumefaciens C58 was effectively evicted by the introduction of a pBBR1 vector containing the repABC of pAtC58. These results indicate that the set of pBBR1-repABC plasmids is a powerful tool for the removal of stable rhizobial plasmids.
Collapse
|
7
|
Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes. Curr Top Microbiol Immunol 2018; 418:443-462. [DOI: 10.1007/82_2018_82] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Abstract
Agrobacterium strains transfer a single-strand form of T-DNA (T-strands) and Virulence (Vir) effector proteins to plant cells. Following transfer, T-strands likely form complexes with Vir and plant proteins that traffic through the cytoplasm and enter the nucleus. T-strands may subsequently randomly integrate into plant chromosomes and permanently express encoded transgenes, a process known as stable transformation. The molecular processes by which T-strands integrate into the host genome remain unknown. Although integration resembles DNA repair processes, the requirement of known DNA repair pathways for integration is controversial. The configuration and genomic position of integrated T-DNA molecules likely affect transgene expression, and control of integration is consequently important for basic research and agricultural biotechnology applications. This article reviews our current knowledge of the process of T-DNA integration and proposes ways in which this knowledge may be manipulated for genome editing and synthetic biology purposes.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA;
| |
Collapse
|
9
|
Wang L, Lacroix B, Guo J, Citovsky V. Transcriptional Activation of Virulence Genes of Rhizobium etli. J Bacteriol 2017; 199:e00841-16. [PMID: 28069822 PMCID: PMC5331667 DOI: 10.1128/jb.00841-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/03/2017] [Indexed: 01/24/2023] Open
Abstract
Recently, Rhizobium etli, in addition to Agrobacterium spp., has emerged as a prokaryotic species whose genome encodes a functional machinery for DNA transfer to plant cells. To understand this R. etli-mediated genetic transformation, it would be useful to define how its vir genes respond to the host plants. Here, we explored the transcriptional activation of the vir genes contained on the R. etli p42a plasmid. Using a reporter construct harboring lacZ under the control of the R. etli virE promoter, we show that the signal phenolic molecule acetosyringone (AS) induces R. etli vir gene expression both in an R. etli background and in an Agrobacterium tumefaciens background. Furthermore, in both bacterial backgrounds, the p42a plasmid also promoted plant genetic transformation with a reporter transfer DNA (T-DNA). Importantly, the R. etli vir genes were transcriptionally activated by AS in a bacterial species-specific fashion in regard to the VirA/VirG signal sensor system, and this activation was induced by signals from the natural host species of this bacterium but not from nonhost plants. The early kinetics of transcriptional activation of the major vir genes of R. etli also revealed several features distinct from those known for A. tumefaciens: the expression of the virG gene reached saturation relatively quickly, and virB2, which in R. etli is located outside the virB operon, was expressed only at low levels and did not respond to AS. These differences in vir gene transcription may contribute to the lower efficiency of T-DNA transfer of R. etli p42a than of T-DNA transfer of pTiC58 of A. tumefaciensIMPORTANCE The region encoding homologs of Agrobacterium tumefaciens virulence genes in the Rhizobium etli CE3 p42a plasmid was the first endogenous virulence system encoded by the genome of a non-Agrobacterium species demonstrated to be functional in DNA transfer and stable integration into the plant cell genome. In this study, we explored the transcriptional regulation and induction of virulence genes in R. etli and show similarities to and differences from those of their A. tumefaciens counterparts, contributing to an understanding and a comparison of these two systems. Whereas most vir genes in R. etli follow an induction pattern similar to that of A. tumefaciens vir genes, a few significant differences may at least in part explain the variations in T-DNA transfer efficiency.
Collapse
Affiliation(s)
- Luyao Wang
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, USA
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, Jiangsu Province, China
| | - Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, USA
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, Jiangsu Province, China
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, USA
| |
Collapse
|
10
|
Abstract
Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.
Collapse
|
11
|
Lacroix B, Citovsky V. A Functional Bacterium-to-Plant DNA Transfer Machinery of Rhizobium etli. PLoS Pathog 2016; 12:e1005502. [PMID: 26968003 PMCID: PMC4788154 DOI: 10.1371/journal.ppat.1005502] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
Different strains and species of the soil phytopathogen Agrobacterium possess the ability to transfer and integrate a segment of DNA (T-DNA) into the genome of their eukaryotic hosts, which is mainly mediated by a set of virulence (vir) genes located on the bacterial Ti-plasmid that also contains the T-DNA. To date, Agrobacterium is considered to be unique in its capacity to mediate genetic transformation of eukaryotes. However, close homologs of the vir genes are encoded by the p42a plasmid of Rhizobium etli; this microorganism is related to Agrobacterium, but known only as a symbiotic bacterium that forms nitrogen-fixing nodules in several species of beans. Here, we show that R. etli can mediate functional DNA transfer and stable genetic transformation of plant cells, when provided with a plasmid containing a T-DNA segment. Thus, R. etli represents another bacterial species, besides Agrobacterium, that encodes a protein machinery for DNA transfer to eukaryotic cells and their subsequent genetic modification.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
12
|
Rudder S, Doohan F, Creevey CJ, Wendt T, Mullins E. Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics 2014; 15:268. [PMID: 24708309 PMCID: PMC4051167 DOI: 10.1186/1471-2164-15-268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/19/2014] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Recently it has been shown that Ensifer adhaerens can be used as a plant transformation technology, transferring genes into several plant genomes when equipped with a Ti plasmid. For this study, we have sequenced the genome of Ensifer adhaerens OV14 (OV14) and compared it with those of Agrobacterium tumefaciens C58 (C58) and Sinorhizobium meliloti 1021 (1021); the latter of which has also demonstrated a capacity to genetically transform crop genomes, albeit at significantly reduced frequencies. RESULTS The 7.7 Mb OV14 genome comprises two chromosomes and two plasmids. All protein coding regions in the OV14 genome were functionally grouped based on an eggNOG database. No genes homologous to the A. tumefaciens Ti plasmid vir genes appeared to be present in the OV14 genome. Unexpectedly, OV14 and 1021 were found to possess homologs to chromosomal based genes cited as essential to A. tumefaciens T-DNA transfer. Of significance, genes that are non-essential but exert a positive influence on virulence and the ability to genetically transform host genomes were identified in OV14 but were absent from the 1021 genome. CONCLUSIONS This study reveals the presence of homologs to chromosomally based Agrobacterium genes that support T-DNA transfer within the genome of OV14 and other alphaproteobacteria. The sequencing and analysis of the OV14 genome increases our understanding of T-DNA transfer by non-Agrobacterium species and creates a platform for the continued improvement of Ensifer-mediated transformation (EMT).
Collapse
Affiliation(s)
- Steven Rudder
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fiona Doohan
- UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christopher J Creevey
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- Current address: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3FL, UK
| | - Toni Wendt
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- Current address: Carlsberg Research Centre, Gamle Carlsberg Vej 4-10, 1799 Copenhagen V, Denmark
| | - Ewen Mullins
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
| |
Collapse
|
13
|
Barrell PJ, Meiyalaghan S, Jacobs JME, Conner AJ. Applications of biotechnology and genomics in potato improvement. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:907-20. [PMID: 23924159 DOI: 10.1111/pbi.12099] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/12/2013] [Accepted: 06/16/2013] [Indexed: 05/12/2023]
Abstract
Potato is the third most important global food crop and the most widely grown noncereal crop. As a species highly amenable to cell culture, it has a long history of biotechnology applications for crop improvement. This review begins with a historical perspective on potato improvement using biotechnology encompassing pathogen elimination, wide hybridization, ploidy manipulation and applications of cell culture. We describe the past developments and new approaches for gene transfer to potato. Transformation is highly effective for adding single genes to existing elite potato clones with no, or minimal, disturbances to their genetic background and represents the only effective way to produce isogenic lines of specific genotypes/cultivars. This is virtually impossible via traditional breeding as, due to the high heterozygosity in the tetraploid potato genome, the genetic integrity of potato clones is lost upon sexual reproduction as a result of allele segregation. These genetic attributes have also provided challenges for the development of genetic maps and applications of molecular markers and genomics in potato breeding. Various molecular approaches used to characterize loci, (candidate) genes and alleles in potato, and associating phenotype with genotype are also described. The recent determination of the potato genome sequence has presented new opportunities for genomewide assays to provide tools for gene discovery and enabling the development of robustly unique marker haplotypes spanning QTL regions. The latter will be useful in introgression breeding and whole-genome approaches such as genomic selection to improve the efficiency of selecting elite clones and enhancing genetic gain over time.
Collapse
Affiliation(s)
- Philippa J Barrell
- The New Zealand Institute for Plant & Food Research Limited, Christchurch, New Zealand
| | | | | | | |
Collapse
|
14
|
Production of pharmaceutical proteins in solanaceae food crops. Int J Mol Sci 2013; 14:2753-73. [PMID: 23434646 PMCID: PMC3588013 DOI: 10.3390/ijms14022753] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/11/2013] [Accepted: 01/22/2013] [Indexed: 12/13/2022] Open
Abstract
The benefits of increased safety and cost-effectiveness make vegetable crops appropriate systems for the production and delivery of pharmaceutical proteins. In particular, Solanaceae edible crops could be inexpensive biofactories for oral vaccines and other pharmaceutical proteins that can be ingested as minimally processed extracts or as partially purified products. The field of crop plant biotechnology is advancing rapidly due to novel developments in genetic and genomic tools being made available today for the scientific community. In this review, we briefly summarize data now available regarding genomic resources for the Solanaceae family. In addition, we describe novel strategies developed for the expression of foreign proteins in vegetable crops and the utilization of these techniques to manufacture pharmaceutical proteins.
Collapse
|
15
|
Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14. Transgenic Res 2011; 21:567-78. [DOI: 10.1007/s11248-011-9553-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
|