1
|
Synergistic effect of acetyl xylan esterase from Talaromyces leycettanus JCM12802 and xylanase from Neocallimastix patriciarum achieved by introducing carbohydrate-binding module-1. AMB Express 2019; 9:13. [PMID: 30694400 PMCID: PMC6351639 DOI: 10.1186/s13568-019-0740-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
Wheat bran is an effective raw material for preparation xylooligosaccharides; however, current research mainly focuses on alkali extraction and enzymatic hydrolysis methods. Since ester bonds are destroyed during the alkali extraction process, xylanase and arabinofuranosidase are mainly used to hydrolyze xylooligosaccharides. However, alkali extraction costs are very high, and the method also causes pollution. Therefore, this study focuses on elucidating a method to efficiently and directly degrade destarched wheat bran. First, an acidic acetyl xylan esterase (AXE) containing a carbohydrate-binding module-1 (CBM1) domain was cloned from Talaromyces leycettanus JCM12802 and successfully expressed in Pichia pastoris. Characterization showed that the full-length acetyl xylan esterase AXE + CBM1 was similar toe uncovered AXE with an optimum temperature and pH of 55 °C and 6.5, respectively. Testing the acetyl xylan esterase and xylanase derived from Neocallimastix patriciarum in a starch-free wheat bran cooperative experiment revealed that AXE + CBM1 and AXE produced 29% and 16% reducing sugars respectively, compared to when only NPXYN11 was used. In addition, introduced the CBM1 domain into NPXYN11, and the results indicated that the CBM1 domain showed little effect on NPXYN11 properties. Finally, the systematically synergistic effects between acetyl xylan esterase and xylanase with/without the CBM1 domain demonstrated that the combined ratio of AXE + CBM1 coming in first and NPXYN11 + CBM1 s increased reducing sugars by almost 35% with AXE and NPXYN11. Furthermore, each component's proportion remained the same with respect to xylooligosaccharides, with the largest proportion (86%) containing of 49% xylobiose and 37% xylotriose.
Collapse
|
2
|
Park SH, Ong RG, Sticklen M. Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1329-44. [PMID: 26627868 PMCID: PMC5063159 DOI: 10.1111/pbi.12505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 05/18/2023]
Abstract
Microbial cell wall-deconstructing enzymes are widely used in the food, wine, pulp and paper, textile, and detergent industries and will be heavily utilized by cellulosic biorefineries in the production of fuels and chemicals. Due to their ability to use freely available solar energy, genetically engineered bioenergy crops provide an attractive alternative to microbial bioreactors for the production of cell wall-deconstructing enzymes. This review article summarizes the efforts made within the last decade on the production of cell wall-deconstructing enzymes in planta for use in the deconstruction of lignocellulosic biomass. A number of strategies have been employed to increase enzyme yields and limit negative impacts on plant growth and development including targeting heterologous enzymes into specific subcellular compartments using signal peptides, using tissue-specific or inducible promoters to limit the expression of enzymes to certain portions of the plant or certain times, and fusion of amplification sequences upstream of the coding region to enhance expression. We also summarize methods that have been used to access and maintain activity of plant-generated enzymes when used in conjunction with thermochemical pretreatments for the production of lignocellulosic biofuels.
Collapse
Affiliation(s)
- Sang-Hyuck Park
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Rebecca Garlock Ong
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, MI, USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Mariam Sticklen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Willis JD, Mazarei M, Stewart CN. Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels. FRONTIERS IN PLANT SCIENCE 2016; 7:675. [PMID: 27303411 PMCID: PMC4885837 DOI: 10.3389/fpls.2016.00675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/02/2016] [Indexed: 05/25/2023]
Abstract
Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD) enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most research has focused on plant overexpression of CWD enzyme-coding genes from free-living bacteria and fungi that naturally break down plant cell walls. Recently, it has been found that insect digestive tracts harbor novel sources of lignocellulolytic biocatalysts that might be exploited for biofuel production. These CWD enzyme genes can be located in the insect genomes or in symbiotic microbes. When CWD genes are transformed into plants, negative pleiotropic effects are possible such as unintended cell wall digestion. The use of codon optimization along with organelle and tissue specific targeting improves CWD enzyme yields. The literature teaches several important lessons on strategic deployment of CWD genes in transgenic plants, which is the focus of this review.
Collapse
Affiliation(s)
- Jonathan D. Willis
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- Oak Ridge National Laboratory, BioEnergy Science CenterOak Ridge, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- Oak Ridge National Laboratory, BioEnergy Science CenterOak Ridge, TN, USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- Oak Ridge National Laboratory, BioEnergy Science CenterOak Ridge, TN, USA
| |
Collapse
|
4
|
Tan HT, Corbin KR, Fincher GB. Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls. FRONTIERS IN PLANT SCIENCE 2016; 7:1854. [PMID: 28018390 PMCID: PMC5161040 DOI: 10.3389/fpls.2016.01854] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/24/2016] [Indexed: 05/15/2023]
Abstract
Plant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels. Estimates place annual plant cellulose production from captured light energy in the order of hundreds of billions of tons. Lignin is synthesized in the same order of magnitude and, as a very large polymer of phenylpropanoid residues, lignin is also an abundant, high energy macromolecule. However, one of the major functions of these cell wall constituents in plants is to provide the extreme tensile and compressive strengths that enable plants to resist the forces of gravity and a broad range of other mechanical forces. Over millions of years these wall constituents have evolved under natural selection to generate extremely tough and resilient biomaterials. The rapid degradation of these tough cell wall composites to fermentable sugars is therefore a difficult task and has significantly slowed the development of a viable lignocellulose-based biofuels industry. However, good progress has been made in overcoming this so-called recalcitrance of lignocellulosic feedstocks for the biofuels industry, through modifications to the lignocellulose itself, innovative pre-treatments of the biomass, improved enzymes and the development of superior yeasts and other microorganisms for the fermentation process. Nevertheless, it has been argued that bioethanol might not be the best or only biofuel that can be generated from lignocellulosic biomass sources and that hydrocarbons with intrinsically higher energy densities might be produced using emerging and continuous flow systems that are capable of converting a broad range of plant and other biomasses to bio-oils through so-called 'agnostic' technologies such as hydrothermal liquefaction. Continued attention to regulatory frameworks and ongoing government support will be required for the next phase of development of internationally viable biofuels industries.
Collapse
Affiliation(s)
- Hwei-Ting Tan
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, BrisbaneQLD, Australia
| | - Kendall R. Corbin
- Centre for Marine Bioproducts Development, School of Medicine, Flinders University, Bedford ParkSA, Australia
| | - Geoffrey B. Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
- *Correspondence: Geoffrey B. Fincher,
| |
Collapse
|
5
|
Tavares EQP, De Souza AP, Buckeridge MS. How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4133-43. [PMID: 25922489 DOI: 10.1093/jxb/erv171] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cell-wall recalcitrance to hydrolysis still represents one of the major bottlenecks for second-generation bioethanol production. This occurs despite the development of pre-treatments, the prospect of new enzymes, and the production of transgenic plants with less-recalcitrant cell walls. Recalcitrance, which is the intrinsic resistance to breakdown imposed by polymer assembly, is the result of inherent limitations in its three domains. These consist of: (i) porosity, associated with a pectin matrix impairing trafficking through the wall; (ii) the glycomic code, which refers to the fine-structural emergent complexity of cell-wall polymers that are unique to cells, tissues, and species; and (iii) cellulose crystallinity, which refers to the organization in micro- and/or macrofibrils. One way to circumvent recalcitrance could be by following cell-wall hydrolysis strategies underlying plant endogenous mechanisms that are optimized to precisely modify cell walls in planta. Thus, the cell-wall degradation that occurs during fruit ripening, abscission, storage cell-wall mobilization, and aerenchyma formation are reviewed in order to highlight how plants deal with recalcitrance and which are the routes to couple prospective enzymes and cocktail designs with cell-wall features. The manipulation of key enzyme levels in planta can help achieving biologically pre-treated walls (i.e. less recalcitrant) before plants are harvested for bioethanol production. This may be helpful in decreasing the costs associated with producing bioethanol from biomass.
Collapse
Affiliation(s)
- Eveline Q P Tavares
- Laboratory of Plant Physiological Ecology (LAFIECO), Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP, Brazil
| | - Amanda P De Souza
- Laboratory of Plant Physiological Ecology (LAFIECO), Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP, Brazil
| | - Marcos S Buckeridge
- Laboratory of Plant Physiological Ecology (LAFIECO), Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Hahn S, Giritch A, Bartels D, Bortesi L, Gleba Y. A novel and fully scalable Agrobacterium spray-based process for manufacturing cellulases and other cost-sensitive proteins in plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:708-16. [PMID: 25470212 DOI: 10.1111/pbi.12299] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 05/17/2023]
Abstract
Transient transfection of plants by vacuum infiltration of Agrobacterium vectors represents the state of the art in plant-based protein manufacturing; however, the complexity and cost of this approach restrict it to pharmaceutical proteins. We demonstrated that simple spraying of Nicotiana plants with Agrobacterium vectors in the presence of a surfactant can substitute for vacuum inoculation. When the T-DNA of Agrobacterium encodes viral replicons capable of cell-to-cell movement, up to 90% of the leaf cells can be transfected and express a recombinant protein at levels up to 50% of total soluble protein. This simple, fast and indefinitely scalable process was successfully applied to produce cellulases, one of the most volume- and cost-sensitive biotechnology products. We demonstrate here for the first time that representatives of all hydrolase classes necessary for cellulosic biomass decomposition can be expressed at high levels, stored as silage without significant loss of activity and then used directly as enzyme additives. This process enables production of cellulases, and other potential high-volume products such as noncaloric sweetener thaumatin and antiviral protein griffithsin, at commodity agricultural prices and could find broad applicability in the large-scale production of many other cost-sensitive proteins.
Collapse
Affiliation(s)
- Simone Hahn
- Nomad Bioscience GmbH, Halle (Saale), Germany
| | | | | | | | - Yuri Gleba
- Nomad Bioscience GmbH, Halle (Saale), Germany
| |
Collapse
|
7
|
Klose H, Günl M, Usadel B, Fischer R, Commandeur U. Cell wall modification in tobacco by differential targeting of recombinant endoglucanase from Trichoderma reesei. BMC PLANT BIOLOGY 2015; 15:54. [PMID: 25849300 PMCID: PMC4340609 DOI: 10.1186/s12870-015-0443-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/29/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND The development of transgenic plants as a production platform for biomass-degrading enzymes is a promising tool for an economically feasible allocation of enzymes processing lignocellulose. Previous research has already identified a major limitation of in planta production such as interference with the structure and integrity of the plant cell wall resulting in a negative influence on plant growth and development. RESULTS Here, we describe the in planta expression of endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei with differential intracellular targeting and evaluate its impact on the tobacco cell wall composition. Targeting of the enzyme to the apoplast leads to distinct changes in cell polysaccharides such as glucose level in the matrix polysaccharides (MPS). These effects are combined with severe changes in plant development. Retention of TrCel5A in the endoplasmic reticulum (ER) could avoid visible effects on plant growth under the chosen conditions, but exhibits changes in the composition of the MPS. CONCLUSIONS These results give new insights into the complex interaction of heterologous cellulase expression with cell wall development and it outlines novel promising strategies to engineer plant cell walls for improved biomass processing.
Collapse
Affiliation(s)
- Holger Klose
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
- />Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Markus Günl
- />Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
| | - Björn Usadel
- />Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
- />Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
| | - Rainer Fischer
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
- />Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Ulrich Commandeur
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| |
Collapse
|
8
|
Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MWW, Kelly RM. Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 2014; 38:393-448. [DOI: 10.1111/1574-6976.12044] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 11/28/2022] Open
|
9
|
Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:135. [PMID: 25356086 PMCID: PMC4212100 DOI: 10.1186/s13068-014-0135-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/03/2014] [Indexed: 05/03/2023]
Abstract
Second generation biofuel development is increasingly reliant on the recombinant expression of cellulases. Designing or identifying successful expression systems is thus of preeminent importance to industrial progress in the field. Recombinant production of cellulases has been performed using a wide range of expression systems in bacteria, yeasts and plants. In a number of these systems, particularly when using bacteria and plants, significant challenges have been experienced in expressing full-length proteins or proteins at high yield. Further difficulties have been encountered in designing recombinant systems for surface-display of cellulases and for use in consolidated bioprocessing in bacteria and yeast. For establishing cellulase expression in plants, various strategies are utilized to overcome problems, such as the auto-hydrolysis of developing plant cell walls. In this review, we investigate the major challenges, as well as the major advances made to date in the recombinant expression of cellulases across the commonly used bacterial, plant and yeast systems. We review some of the critical aspects to be considered for industrial-scale cellulase production.
Collapse
Affiliation(s)
- Camilla Lambertz
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Megan Garvey
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Present address: School of Medicine, Deakin University, CSIRO Australian Animal Health Laboratory, 5 Portarlington Rd, Newcomb, VIC 3219 Australia
| | - Johannes Klinger
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Dirk Heesel
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Holger Klose
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Present address: Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Rainer Fischer
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Ulrich Commandeur
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
10
|
Jung S, Lee DS, Kim YO, Joshi CP, Bae HJ. Improved recombinant cellulase expression in chloroplast of tobacco through promoter engineering and 5' amplification promoting sequence. PLANT MOLECULAR BIOLOGY 2013; 83:317-28. [PMID: 23771581 DOI: 10.1007/s11103-013-0088-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 06/03/2013] [Indexed: 05/07/2023]
Abstract
Economical production of bioethanol from lignocellulosic biomass still faces many technical limitations. Cost-effective production of fermentable sugars is still not practical for large-scale production of bioethanol due to high costs of lignocellulolytic enzymes. Therefore, plant molecular farming, where plants are used as bioreactors, was developed for the mass production of cell wall degrading enzymes that will help reduce costs. Subcellular targeting is also potentially more suitable for the accumulation of recombinant cellulases. Herein, we generated transgenic tobacco plants (Nicotiana tabacum cv. SR1) that accumulated Thermotoga maritima BglB cellulase, which was driven by the alfalfa RbcsK-1A promoter and contained a small subunit of the rubisco complex transit peptide. The generated transformants possessed high specific BglB activity and did not show any abnormal phenotypes. Furthermore, we genetically engineered the RbcsK-1A promoter (MRbcsK-1A) and fused the amplification promoting sequence (aps) to MRbcsK-1A promoter to obtain high expression of BglB in transgenic plants. AMRsB plant lines with aps-MRbcsK-1A promoter showed the highest specific activity of BglB, and the accumulated BglB protein represented up to 9.3 % of total soluble protein. When BglB was expressed in Arabidopsis and tobacco plants, the maximal production capacity of recombinant BglB was 0.59 and 1.42 mg/g wet weight, respectively. These results suggests that suitable recombinant expression of cellulases in subcellular compartments such as chloroplasts will contribute to the cost-effective production of enzymes, and will serve as the solid foundation for the future commercialization of bioethanol production via plant molecular farming.
Collapse
Affiliation(s)
- Sera Jung
- Department of Forest Products and Technology, Chonnam National University, Kwangju, 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
11
|
Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 2013; 31:581-93. [DOI: 10.1016/j.tibtech.2013.06.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
12
|
Lee DS, Lee KH, Jung S, Jo EJ, Han KH, Bae HJ. Synergistic effects of 2A-mediated polyproteins on the production of lignocellulose degradation enzymes in tobacco plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4797-810. [PMID: 22798663 PMCID: PMC3427999 DOI: 10.1093/jxb/ers159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cost-effective bioethanol production requires a supply of various low-cost enzymes that can hydrolyse lignocellulosic materials consisting of multiple polymers. Because plant-based enzyme expression systems offer low-cost and large-scale production, this study simultaneously expressed β-glucosidase (BglB), xylanase (XylII), exoglucanase (E3), and endoglucanase (Cel5A) in tobacco plants, which were individually fused with chloroplast-targeting transit peptides and linked via the 2A self-cleaving oligopeptideex from foot-and-mouth disease virus (FMDV) as follows: [RsBglB-2A-RaCel5A], [RsXylII-2A-RaCel5A], and [RsE3-2A-RaCel5A]. The enzymes were targeted to chloroplasts in tobacco cells and their activities were confirmed. Similarly to the results of a transient assay using Arabidopsis thaliana protoplasts, when XylII was placed upstream of the 2A sequence, the [RsXylII-2A-RaCel5A] transgenic tobacco plant had a more positive influence on expression of the protein placed downstream. The [RsBglB-2A-RaCel5A] and [RsE3-2A-RaCel5A] transgenic lines displayed higher activities towards carboxylmethylcellulose (CMC) compared to those in the [RsXylII-2A-RaCel5A] transgenic line. This higher activity was attributable to the synergistic effects of the different cellulases used. The [RsBglB-2A-RaCel5A] lines exhibited greater efficiency (35-74% increase) of CMC hydrolysis when the exoglucanase CBHII was added. Among the various exoglucanases, E3 showed higher activity with the crude extract of the [RsBglB-2A-RaCel5A] transgenic line. Transgenic expression of 2A-mediated multiple enzymes induced synergistic effects and led to more efficient hydrolysis of lignocellulosic materials for bioethanol production.
Collapse
Affiliation(s)
- Dae-Seok Lee
- Bio-energy Research Institute, Chonnam National UniversityGwangju 500–757, Republic of Korea
- Department of Forest Products and Technology (Bk21 Program), Chonnam National UniversityGwangju 500–757, Republic of Korea
| | - Kwang-Ho Lee
- Bio-energy Research Institute, Chonnam National UniversityGwangju 500–757, Republic of Korea
| | - Sera Jung
- Department of Forest Products and Technology (Bk21 Program), Chonnam National UniversityGwangju 500–757, Republic of Korea
| | - Eun-Jin Jo
- Bio-energy Research Institute, Chonnam National UniversityGwangju 500–757, Republic of Korea
| | - Kyung-Hwan Han
- Department of Plant Molecular Biology, Michigan State UniversityUSA
| | - Hyeun-Jong Bae
- Bio-energy Research Institute, Chonnam National UniversityGwangju 500–757, Republic of Korea
- Department of Forest Products and Technology (Bk21 Program), Chonnam National UniversityGwangju 500–757, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju
| |
Collapse
|
13
|
Nigorikawa M, Watanabe A, Furukawa K, Sonoki T, Ito Y. Enhanced saccharification of rice straw by overexpression of rice exo-glucanase. RICE (NEW YORK, N.Y.) 2012; 5:14. [PMID: 24279714 PMCID: PMC4883724 DOI: 10.1186/1939-8433-5-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 05/25/2023]
Abstract
BACKGROUND Efficient production of carbon-neutral biofuels is key to resolving global warming and exhaustion of fossil fuels. Cellulose, which is the most abundant biomass, is physically strong and biochemically stable, and these characteristics lead to difficulty of efficient saccharification of cellulosic compounds for production of fermentable glucose and other sugars. RESULTS We transformed rice with overexpressing constructs of rice genes encoding each of three classes of cellulases. The exo-glucanase overexpressing plants showed various abnormalities in leaf such as division of leaf blade, crack on leaf surface, excess lacunae in midrib structure and necrotic colour change. The overexpressing plants also showed sterility. Noticeably, these plants showed enhanced saccharification of stems after maturation. These results indicate that overexpression of the exo-glucanase gene brought about various developmental defects associated with modification of cell wall and enhanced saccharification in rice. On the other hand, endo-glucanase-overexpressing plants could not be obtained, and overexpression of β-glucosidase brought about no effect on plant growth and development. CONCLUSIONS Our results indicate that genetic engineering of cellulosic biomass plants by overexpressing cellulase genes will be one of the approaches to confer enhanced saccharification ability for efficient production of cellulosic biofuels such as ethanol.
Collapse
Affiliation(s)
- Mutsumi Nigorikawa
- />Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Aiko Watanabe
- />Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho, Hirosaki, 036-8560 Japan
| | - Kayoko Furukawa
- />Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Tomonori Sonoki
- />Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho, Hirosaki, 036-8560 Japan
| | - Yukihiro Ito
- />Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| |
Collapse
|
14
|
Kim YO, Patel DH, Lee DS, Song Y, Bae HJ. High cadmium-binding ability of a novel Colocasia esculenta metallothionein increases cadmium tolerance in Escherichia coli and tobacco. Biosci Biotechnol Biochem 2011; 75:1912-20. [PMID: 21979068 DOI: 10.1271/bbb.110289] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimental evidence in vivo as to the functional roles and binding properties to cadmium (Cd) of type-2 plants metallothionein (MT) has been limited thus far. We investigated the biological role of metallothionein from Colocasia esculenta (CeMT2b) in Escherichia coli and tobacco, and developed a new model for the relationship between Cd tolerance and Cd-binding ability. Heterologous expression of CeMT2b in Escherichia coli greatly enhanced Cd tolerance and accumulated Cd content as compared to control cells. The molecular weight of CeMT2b increased with Cd, and CeMT2b bound up to 5.96±1 molar ratio (Cd/protein). Under Cd stress, transgenic tobacco plants displayed much better seedling growth and high Cd accumulation than the wild type. The presence of an extra CXC motif in CeMT2b contributed to the enhanced Cd-tolerance. The present study provides the first insight into the ability of type-2 plant MT to bind physiological Cd.
Collapse
Affiliation(s)
- Yeon-Ok Kim
- Bio-Energy Research Institute, Chonnam National University, Gwangju, Korea
| | | | | | | | | |
Collapse
|