1
|
Evaluation of the α-casein (CSN1S1) locus as a potential target for a site-specific transgene integration. Sci Rep 2022; 12:7983. [PMID: 35568783 PMCID: PMC9107462 DOI: 10.1038/s41598-022-12071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Transgenic animals are an important tool in biotechnology, including the production of recombinant proteins in the milk. Traditionally, expression constructs are based on hybrid vectors bearing mammary gland specific regulatory elements from the α-casein (Csn1s1), β-casein (Csn2), whey acidic protein (WAP), or β-lactoglobulin (BLG) genes. Overexpression from the randomly integrated vectors typically provides high levels of expression, but has drawbacks due to unpredictable genome localization. CRISPR-Cas9 targeted transgene integration into the endogenous casein locus could alleviate the need for extensive animal screening to achieve high and reproducible expression levels. We decided to evaluate such a “precise” integration approach, placing the human granulocyte–macrophage colony-stimulating factor (hGMCSF) gene under control of the mouse endogenous alpha-S1-casein (Csn1s1) promoter. We designed two types of transgene integrations: a knock-in in the second exon of the Csn1s1 (INS-GM) and a full-size Csn1s1 replacement with hGMCSF (REP-GM) which was never tested before. The INS-GM approach demonstrated low transgene expression and milk protein levels (0.4% of Csn2 transcripts; 2–11 µg/ml hGMCSF). This was probably caused by the absence of the 3’-polyadenylation signal in the hGMCSF transgene. REP-GM animals displayed high transgene expression, reaching and slightly exceeding the level of the endogenous Csn1s1 (30–40% of Csn2 transcripts), but yielded less hGMCSF protein than expected (0.2–0.5 mg/ml vs 25 mg/ml of Csn1s1), indicating that translation of the protein is not optimal. Homozygous inserts leading to the Csn1s1 knock-out did not have any long standing effects on the animals’ health. Thus, in our experimental design, site-specific transgene integration into the casein locus did not provide any significant advantage over the overexpression approach.
Collapse
|
2
|
Smirnov AV, Shnaider TА, Korablev AN, Yunusova AM, Serova IA, Battulin NR. A hypomorphic mutation in the mouse Csn1s1 gene generated by CRISPR/Cas9 pronuclear microinjection. Vavilovskii Zhurnal Genet Selektsii 2021; 25:331-336. [PMID: 34901729 PMCID: PMC8627868 DOI: 10.18699/vj21.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 11/19/2022] Open
Abstract
Caseins are major milk proteins that have an evolutionarily conserved role in nutrition. Sequence variations in the
casein genes affect milk composition in livestock species. Regulatory elements of the casein genes could be used to direct
the expression of desired transgenes into the milk of transgenic animals. Dozens of casein alleles have been identified for
goats, cows, sheep, camels and horses, and these sequence variants are associated with altered gene expression and milk
protein content. Most of the known mutations affecting casein genes’ expression are located in the promoter and 3’-untranslated regions. We performed pronuclear microinjections with Cas9 mRNA and sgRNA against the first coding exon of
the mouse Csn1s1 gene to introduce random mutations in the α-casein (Csn1s1) signal peptide sequence at the beginning
of the mouse gene. Sanger sequencing of the founder mice identified 40 mutations. As expected, mutations clustered
around the sgRNA cut site (3 bp from PAM). Most of the mutations represented small deletions (1–10 bp), but we detected
several larger deletions as well (100–300 bp). Functionally most mutations led to gene knockout due to a frameshift or a
start codon loss. Some of the mutations represented in-frame indels in the first coding exon. Of these, we describe a novel
hypomorphic Csn1s1 (Csn1s1c.4-5insTCC) allele. We measured Csn1s1 protein levels and confirmed that the mutation has a
negative effect on milk composition, which shows a 50 % reduction in gene expression and a 40–80 % decrease in Csn1s1
protein amount, compared to the wild-type allele. We assumed that mutation affected transcript stability or splicing by an
unknown mechanism. This mutation can potentially serve as a genetic marker for low Csn1s1 expression.
Collapse
Affiliation(s)
- A V Smirnov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T А Shnaider
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A N Korablev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A M Yunusova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I A Serova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N R Battulin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
3
|
Gong GH, Han S, Huang XL, Xie LP, Zhang W, Xu L, Hu YJ. The Expression of Recombinant Human Serum Albumin in the Mammary Gland of Transgenic Mice. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1730985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractHuman serum albumin (HSA) is widely used in the clinic for the treatment of several diseases in large amount each year. With the increasing demands of HSA in clinic and limited blood resource, recombinant HSA (rHSA) is becoming an attractive and alternative source for HSA production. In this study, we aimed to express rHSA in the mammary glands of transgenic mice by using a tissue-specific promoter and other regulatory elements. An rHSA expression vector was constructed bearing the cDNA and first intron of HSA under the control of bovine αs1-casein promoter with a 2 × chicken β-globin insulator in the front. Transgenic mice were generated and reverse transcription polymerase chain reaction showed that rHSA was expressed only in the mammary gland, indicating the tissue specificity of the bovine αs1-casein promoter in directing transgene transcription in transgenic mice. Enzyme-linked immunosorbent assay test showed that rHSA was successfully secreted into the milk of transgenic mice with the highest level at 1.98 ± 0.12 g/L. Our results indicate the ability of the bovine αs1-casein promoter to induce successful expression of rHSA in the mammary gland of transgenic mice.
Collapse
Affiliation(s)
- Gui-Hua Gong
- Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Shu Han
- Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Xiao-Ling Huang
- Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Li-Ping Xie
- Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Wei Zhang
- Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Lei Xu
- Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - You-Jia Hu
- Biopharmaceutical Department, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Zhu W, Xu R, Gong G, Xu L, Hu Y, Xie L. Medium optimization for high yield production of human serum albumin in Pichia pastoris and its efficient purification. Protein Expr Purif 2021; 181:105831. [PMID: 33508474 DOI: 10.1016/j.pep.2021.105831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To improve the yield of recombinant human serum albumin (HSA) in Pichia pastoris by medium optimization and establish the related purification scheme. RESULTS A simplified version of the generally used buffered glycerol complex medium (BMGY), which contained yeast extract, glycerol and potassium salts, was found to be applicable. By decreasing the salt concentration of basal salt medium (BSM) to half of the original formula further, we achieved a high yield of 17.47 g/L HSA in the supernatant within a 192 h induction, which is the highest rHSA yield ever reported as far as we know. Accompanied with a three-step purification procedure which recovered two thirds of the desired protein at high purity, our work lays a solid foundation for large-scale industrial production of HSA. CONCLUSION Medium optimization plays a significant role in improving the yield of desired protein, lowering the production cost and helping to explore the producing strain's character.
Collapse
Affiliation(s)
- Wen Zhu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Renren Xu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Guihua Gong
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Lei Xu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Liping Xie
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China.
| |
Collapse
|
5
|
Gong G, Zhang W, Xie L, Xu L, Han S, Hu Y. Expression of a recombinant anti-programed cell death 1 antibody in the mammary gland of transgenic mice. Prep Biochem Biotechnol 2020; 51:183-190. [PMID: 32808868 DOI: 10.1080/10826068.2020.1805755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nivolumab, a fully human IgG4 anti-programed cell death 1(PD-1)antibody, is recently one of the most popular and successful therapeutic monoclonal antibodies in clinical use. With the increasing demands for Nivolumab and other therapeutic monoclonal antibodies, the mammary gland bioreactor has been regarded as another choice for the production of recombinant monoclonal antibodies besides mammalian cell culture. Here, we expressed a recombinant human anti-PD-1 antibody in the mammary glands of transgenic mice. Two expression vectors were constructed bearing the heavy and light chains of anti-PD-1 antibody respectively under the control of bovine αs1-casein promoter. Transgenic mice were then generated by co-microinjection of the two expression cassettes. Three F0 founders with both heavy chain and light chain positive were obtained. Transgenes of both chains were detected to be stably transmitted to the offspring. The recombinant antibody was detected in the milk of transgenic mice with the highest expression level up to 80.52 ± 0.82 mg/L and could specifically binds to the human PD-1 antigen. Therefore, our results suggest the feasibility of anti-PD-1 antibody production in the milk of transgenic animals.
Collapse
Affiliation(s)
- Guihua Gong
- China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| | - Wei Zhang
- China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| | - Liping Xie
- China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| | - Lei Xu
- China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| | - Shu Han
- China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| |
Collapse
|
6
|
Zhu W, Gong G, Pan J, Han S, Zhang W, Hu Y, Xie L. High level expression and purification of recombinant human serum albumin in Pichia pastoris. Protein Expr Purif 2018. [DOI: 10.1016/j.pep.2018.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Sharma A, Chaudhuri TK. Physicochemical characterization of E. coli -derived human serum albumin and its comparison with the human plasma counterpart reveals it as a promising biosimilar. J Biotechnol 2018. [DOI: 10.1016/j.jbiotec.2018.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
High-efficiency production of human serum albumin in the posterior silk glands of transgenic silkworms, Bombyx mori L. PLoS One 2018; 13:e0191507. [PMID: 29352308 PMCID: PMC5774803 DOI: 10.1371/journal.pone.0191507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/05/2018] [Indexed: 01/01/2023] Open
Abstract
Human serum albumin (HSA) is an important biological preparation with a variety of biological functions in clinical applications. In this study, the mRNA of a fusion transposase derived from the pESNT-PBase plasmid and a pBHSA plasmid containing the HSA gene under the control of a fibroin light chain (FL) promoter were co-injected into fertilized eggs. Fifty-six transgenic silkworm pedigrees expressing theexogenous recombinant HSA (rHSA) in the posterior silk glands (PSGs) with stable inheritance were successfully obtained. The SDS-PAGE and Western blot results confirmed that the rHSA was secreted into the transgenic silkworm cocoon, and the rHSA could be easily extracted with phosphate-buffered saline (PBS). In our research, the isolated highest amount rHSA constituted up to 29.1% of the total soluble protein of the cocoon shell, indicating that the transgenic silkworm produced an average of 17.4 μg/mg of rHSA in the cocoon shell. The production of soluble rHSA in the PSGs by means of generating transgenic silkworms is a novel approach, whereby a large amount of virus-free and functional HSA can be produced through the simple rearing of silkworms.
Collapse
|
9
|
Sharma A, Chaudhuri TK. Revisiting Escherichia coli as microbial factory for enhanced production of human serum albumin. Microb Cell Fact 2017; 16:173. [PMID: 28982367 PMCID: PMC5629808 DOI: 10.1186/s12934-017-0784-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Human serum albumin (HSA)-one of the most demanded therapeutic proteins with immense biotechnological applications-is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple subst-rates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. RESULTS In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~ 60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. CONCLUSION In the present case, we have filled in the gap in the literature by exploiting the E. coli host system, which is fast-growing and scalable at the low cost of fermentation, as a microbial factory for the enhancement of functional production of rHSA, a crucial protein for therapeutic and biotechnological applications.
Collapse
Affiliation(s)
- Ashima Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
10
|
Sheng J, Wang Y, Turesky RJ, Kluetzman K, Zhang QY, Ding X. Novel Transgenic Mouse Model for Studying Human Serum Albumin as a Biomarker of Carcinogenic Exposure. Chem Res Toxicol 2016; 29:797-809. [PMID: 27028147 DOI: 10.1021/acs.chemrestox.5b00529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Albumin is a commonly used serum protein for studying human exposure to xenobiotic compounds, including therapeutics and environmental pollutants. Often, the reactivity of albumin with xenobiotic compounds is studied ex vivo with human albumin or plasma/serum samples. Some studies have characterized the reactivity of albumin with chemicals in rodent models; however, differences between the orthologous peptide sequences of human and rodent albumins can result in the formation of different types of chemical-protein adducts with different interaction sites or peptide sequences. Our goal is to generate a human albumin transgenic mouse model that can be used to establish human protein biomarkers of exposure to hazardous xenobiotics for human risk assessment via animal studies. We have developed a human albumin transgenic mouse model and characterized the genotype and phenotype of the transgenic mice. The presence of the human albumin gene in the genome of the model mouse was confirmed by genomic PCR analysis, whereas liver-specific expression of the transgenic human albumin mRNA was validated by RT-PCR analysis. Further immunoblot and mass spectrometry analyses indicated that the transgenic human albumin protein is a full-length, mature protein, which is less abundant than the endogenous mouse albumin that coexists in the serum of the transgenic mouse. The transgenic protein was able to form ex vivo adducts with a genotoxic metabolite of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a procarcinogenic heterocyclic aromatic amine formed in cooked meat. This novel human albumin transgenic mouse model will facilitate the development and validation of albumin-carcinogen adducts as biomarkers of xenobiotic exposure and/or toxicity in humans.
Collapse
Affiliation(s)
- Jonathan Sheng
- Wadsworth Center, New York State Department of Health , Albany, New York 12201, United States
| | - Yi Wang
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Kerri Kluetzman
- Wadsworth Center, New York State Department of Health , Albany, New York 12201, United States
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health , Albany, New York 12201, United States
| | - Xinxin Ding
- College of Nanoscale Science, SUNY Polytechnic Institute , Albany, New York 12203, United States
| |
Collapse
|
11
|
Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands. Sci Rep 2016; 6:20657. [PMID: 26853907 PMCID: PMC4745098 DOI: 10.1038/srep20657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/06/2016] [Indexed: 12/19/2022] Open
Abstract
Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription- activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock.
Collapse
|
12
|
Chen Z, He Y, Shi B, Yang D. Human serum albumin from recombinant DNA technology: Challenges and strategies. Biochim Biophys Acta Gen Subj 2013; 1830:5515-25. [DOI: 10.1016/j.bbagen.2013.04.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
|