1
|
Son DJ, Kim GG, Choo HY, Chung NJ, Choo YM. Functional Comparison of Three Chitinases from Symbiotic Bacteria of Entomopathogenic Nematodes. Toxins (Basel) 2024; 16:26. [PMID: 38251242 PMCID: PMC10821219 DOI: 10.3390/toxins16010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Xenorhabdus and Photorhabdus, bacterial symbionts of entomopathogenic nematodes Steinernema and Heterorhabditis, respectively, have several biological activities including insecticidal and antimicrobial activities. Thus, XnChi, XhChi, and PtChi, chitinases of X. nematophila, X. hominickii, and P. temperata isolated from Korean indigenous EPNs S. carpocapsae GJ1-2, S. monticolum GJ11-1, and H. megidis GJ1-2 were cloned and expressed in Escherichia coli BL21 to compare their biological activities. Chitinase proteins of these bacterial symbionts purified using the Ni-NTA system showed different chitobiosidase and endochitinase activities, but N-acetylglucosamidinase activities were not shown in the measuring of chitinolytic activity through N-acetyl-D-glucosarmine oligomers. In addition, the proteins showed different insecticidal and antifungal activities. XnChi showed the highest insecticidal activity against Galleria mellonella, followed by PtChi and XhChi. In antifungal activity, XhChi showed the highest half-maximal inhibitory concentration (IC50) against Fusarium oxysporum with 0.031 mg/mL, followed by PtChi with 0.046 mg/mL, and XnChi with 0.072 mg/mL. XhChi also showed the highest IC50 against F. graminearum with 0.040 mg/mL, but XnChi was more toxic than PtChi with 0.055 mg/mL and 0.133 mg/mL, respectively. This study provides an innovative approach to the biological control of insect pests and fungal diseases of plants with the biological activity of symbiotic bacterial chitinases of entomopathogenic nematodes.
Collapse
Affiliation(s)
- Da-Jeong Son
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea;
- Division of Research and Development, Jinju Bioindustry Foundation, Jinju 52839, Republic of Korea
| | - Geun-Gon Kim
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Ho-Yul Choo
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Nam-Jun Chung
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Young-Moo Choo
- Division of Research and Development, Jinju Bioindustry Foundation, Jinju 52839, Republic of Korea
| |
Collapse
|
2
|
Dobrut A, Brzychczy-Włoch M. Immunogenic Proteins of Group B Streptococcus-Potential Antigens in Immunodiagnostic Assay for GBS Detection. Pathogens 2021; 11:43. [PMID: 35055991 PMCID: PMC8778278 DOI: 10.3390/pathogens11010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen, which asymptomatically colonizes the gastrointestinal and genitourinary tract of up to one third of healthy adults. Nevertheless, GBS carriage in pregnant women may lead to several health issues in newborns causing life threatening infection, such as sepsis, pneumonia or meningitis. Recommended GBS screening in pregnant women significantly reduced morbidity and mortality in infants. Nevertheless, intrapartum antibiotic prophylaxis, recommended following the detection of carriage or in case of lack of a carriage test result for pregnant women who demonstrate certain risk factors, led to the expansion of the adverse phenomenon of bacterial resistance to antibiotics. In our paper, we reviewed some immunogenic GBS proteins, i.e., Alp family proteins, β protein, Lmb, Sip, BibA, FsbA, ScpB, enolase, elongation factor Tu, IMPDH, and GroEL, which possess features characteristic of good candidates for immunodiagnostic assays for GBS carriage detection, such as immunoreactivity and specificity. We assume that they can be used as an alternative diagnostic method to the presently recommended bacteriological cultivation and MALDI.
Collapse
Affiliation(s)
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Faculty of Medicine, Medical College, Jagiellonian University, 31-121 Krakow, Poland;
| |
Collapse
|
3
|
Fourie KR, Wilson HL. Understanding GroEL and DnaK Stress Response Proteins as Antigens for Bacterial Diseases. Vaccines (Basel) 2020; 8:E773. [PMID: 33348708 PMCID: PMC7767184 DOI: 10.3390/vaccines8040773] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/16/2023] Open
Abstract
Bacteria do not simply express a constitutive panel of proteins but they instead undergo dynamic changes in their protein repertoire in response to changes in nutritional status and when exposed to different environments. These differentially expressed proteins may be suitable to use for vaccine antigens if they are virulence factors. Immediately upon entry into the host organism, bacteria are exposed to a different environment, which includes changes in temperature, osmotic pressure, pH, etc. Even when an organism has already penetrated the blood or lymphatics and it then enters another organ or a cell, it can respond to these new conditions by increasing the expression of virulence factors to aid in bacterial adherence, invasion, or immune evasion. Stress response proteins such as heat shock proteins and chaperones are some of the proteins that undergo changes in levels of expression and/or changes in cellular localization from the cytosol to the cell surface or the secretome, making them potential immunogens for vaccine development. Herein we highlight literature showing that intracellular chaperone proteins GroEL and DnaK, which were originally identified as playing a role in protein folding, are relocated to the cell surface or are secreted during invasion and therefore may be recognized by the host immune system as antigens. In addition, we highlight literature showcasing the immunomodulation effects these proteins can have on the immune system, also making them potential adjuvants or immunotherapeutics.
Collapse
Affiliation(s)
- Kezia R. Fourie
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), Saskatoon, SK S7N 5E3, Canada
| | - Heather L. Wilson
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
4
|
Mollah MMI, Roy MC, Choi DY, Hasan MA, Al Baki MA, Yeom HS, Kim Y. Variations of Indole Metabolites and NRPS-PKS Loci in Two Different Virulent Strains of Xenorhabdus hominickii. Front Microbiol 2020; 11:583594. [PMID: 33329448 PMCID: PMC7732475 DOI: 10.3389/fmicb.2020.583594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
Xenorhabdus hominickii ANU1 is known to be an entomopathogenic bacterium symbiotic to nematode Steinernema monticolum. Another bacterial strain X. hominickii DY1 was isolated from a local population of S. monticolum. This bacterial strain X. hominickii DY1 was found to exhibit high insecticidal activities against lepidopteran and coleopteran species after hemocoelic injection. However, these two X. hominickii strains exhibited significant variations in insecticidal activities, with ANU1 strain being more potent than DY1 strain. To clarify their virulence difference, bacterial culture broths of these two strains were compared for secondary metabolite compositions. GC-MS analysis revealed that these two strains had different compositions, including pyrrolopyrazines, piperazines, cyclopeptides, and indoles. Some of these compounds exhibited inhibitory activities against phospholipase A2 to block eicosanoid biosynthesis and induce significant immunosuppression. They also exhibited significant insecticidal activities after oral feeding, with indole derivatives being the most potent. More kinds of indole derivatives were detected in the culture broth of ANU1 strain. To investigate variations in regulation of secondary metabolite production, expression level of leucine-responsive regulatory protein (Lrp), a global transcription factor, was compared. ANU1 strain exhibited significantly lower Lrp expression level than DY1 strain. To assess genetic variations associated with secondary metabolite synthesis, bacterial loci encoding non-ribosomal protein synthase and polyketide synthase (NRPS-PKS) were compared. Three NRPS and four PKS loci were predicted from the genome of X. hominickii. The two bacterial strains exhibited genetic variations (0.12∼0.67%) in amino acid sequences of these NRPS-PKS. Most NRPS-PKS genes exhibited high expression peaks at stationary phase of bacterial growth. However, their expression levels were significantly different between the two strains. These results suggest that differential virulence of the two bacterial strains is caused by the difference in Lrp expression level, leading to difference in the production of indole compounds and other NRPS-PKS-associated secondary metabolites.
Collapse
Affiliation(s)
- Md Mahi Imam Mollah
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, South Korea
| | - Miltan Chandra Roy
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, South Korea
| | - Doo-Yeol Choi
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, South Korea
| | - Md Ariful Hasan
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, South Korea
| | - Md Abdullah Al Baki
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, South Korea
| | - Hyun-Suk Yeom
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemicals Technology, Daejeon, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, South Korea
| |
Collapse
|
5
|
Wu J, Gao H, Zhu X, Li D. An ERF transcription factor enhances plant resistance to Myzus persicae and Spodoptera litura. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1813051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Juan Wu
- Department of Plant Protection, Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, PR China
- Department of Genetics and Breeding of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, PR China
| | - Hao Gao
- Department of Plant Protection, Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, PR China
| | - Xiwu Zhu
- Department of Plant Protection, Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, PR China
| | - Defang Li
- Department of Genetics and Breeding of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, PR China
| |
Collapse
|
6
|
Functional Characterization of Outer Membrane Proteins (OMPs) in Xenorhabdus nematophila and Photorhabdus luminescens through Insect Immune Defense Reactions. INSECTS 2019; 10:insects10100352. [PMID: 31627300 PMCID: PMC6835289 DOI: 10.3390/insects10100352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/21/2022]
Abstract
Xenorhabdus nematophila and Photorhabdusluminescens are entomopathogenic bacterial symbionts that produce toxic proteins that can interfere with the immune system of insects. Herein, we show that outer membrane proteins (OMPs) could be involved as bacterial virulence factors. Purified totals OMPs of both bacterial species were injected into fifth instar larvae of Spodopteraexigua Hübner. Larvae were surveyed for cellular defenses fluctuations in total haemocyte counts (THC) and granulocyte percentage and for the humoral defenses protease, phospholipase A2 (PLA2), and phenoloxidase (PO) activities at specific time intervals. Changes in the expression of the three inducible antimicrobial peptides (AMPs), cecropin, attacin, and spodoptericin, were also measured. Larvae treated with OMPs of both bacterial species had more haemocytes than did the negative controls. OMPs of X. nematophila caused more haemocyte destruction than did the OMPs of P. luminescens. The OMPs of both bacterial species initially activated insect defensive enzymes post-injection, the degree of activation varying with enzyme type. The AMPs, attacin, cecropin, and spodoptericin were up-regulated by OMP injections compared with the normal larvae. The expression of these three AMPs was maximal at four hours post injection (hpi) with P. luminescens OMPs treatment. Expression of the three AMPs in X. nematophila treated insects was irregular and lower than in the P. luminescens OMPs treatment. These findings provide insights into the role of OMPs of entomopathogenic nematode bacterial symbionts in countering the physiological defenses of insects.
Collapse
|
7
|
Hasan MA, Ahmed S, Mollah MMI, Lee D, Kim Y. Variation in pathogenicity of different strains of Xenorhabdus nematophila; Differential immunosuppressive activities and secondary metabolite production. J Invertebr Pathol 2019; 166:107221. [PMID: 31356819 DOI: 10.1016/j.jip.2019.107221] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
Xenorhabdus nematophila, an entomopathogenic bacterium, is mutualistic with the nematode Steinernema carpocapsae. The bacterium produces secondary metabolites to inhibit target insect phospholipase A2 (PLA2) and induce immunosuppression, which is required for the pathogenicity of this bacterium-nematode complex. However, it was unclear if immunosuppressive intensity of the bacteria was correlated with their insecticidal potency. We compared six different X. nematophila strains inhibiting the immune responses of the beet armyworm (Spodoptera exigua) to explain their virulence variations. In addition to four known strains obtained from the Korean Agricultural Culture Collection, we identified two new strains (SK1 and SK2) of X. nematophila from two different isolates of S. carpocapsae. Although all six strains were virulent, they showed significant variation in median lethal bacterial dosage (LD50). The LD50 of most strains was 15-30 CFU/larva, however, the LD50 of the SK1 strain was more than two-fold higher against S. exigua larvae. Immunosuppressive activities of the six strains were measured by comparing hemocyte-spreading behavior and nodule formation; the SK1 strain was significantly less potent than other bacterial strains. These suppressed hemocyte behaviors were recovered by adding arachidonic acid (a catalytic product of PLA2) into all six strains. Bacterial culture broth was fractionated with different organic solvents and the ability to inhibit immune response and PLA2 activity were assessed. All organic extracts had immunosuppressive activities and PLA2-inhibitory activities. GC-MS analysis showed that these organic extracts possessed a total of 87 different compounds. There were variations in chemical components among the six bacterial strains. Organic extracts of SK1 strain, which exhibited the lowest virulence, contained the least number of secondary metabolites.
Collapse
Affiliation(s)
- Md Ariful Hasan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Shabbir Ahmed
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Md Mahi Imam Mollah
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Dongwoon Lee
- School of Environmental Ecology and Tourism, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
8
|
Kim H, Keum S, Hasan A, Kim H, Jung Y, Lee D, Kim Y. Identification of an entomopathogenic bacterium, Xenorhabdus ehlersii KSY, from Steinernema longicaudum GNUS101 and its immunosuppressive activity against insect host by inhibiting eicosanoid biosynthesis. J Invertebr Pathol 2018; 159:6-17. [PMID: 30389324 DOI: 10.1016/j.jip.2018.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 01/15/2023]
Abstract
Steinernema longicaudum GNUS101, an entomopathogenic nematode, was isolated from soils in Korea. Its internal transcribed space sequence was highly similar to the known S. longicaudum species. Infective juveniles (IJs) of S. longicaudum were highly virulent to lepidopteran and coleopteran insects. Two different bacteria were isolated from the hemolymph of lepidopteran larvae infected with S. longicaudum. They exhibited blue and red colonies on nutrient bromothymol blue agar. The red-colored bacterium was identified as Enterococcus mundtii KHY while the blue-colored bacterium was identified as Xenorhabdus ehlersii KSY based on 16S rRNA sequencing and biochemical characters. The bacterial species showed different growth rates, with X. ehlersii KSY growing more slowly than E. mundtii KHY. Both bacteria were entomopathogenic, but showed differences in suppressing host immune responses. X. ehlersii KSY, but not E. mundtii KHY, showed inhibitory activity against cellular immune responses of Spodoptera exigua larvae including hemocyte-spreading behavior and nodule formation in bacteria-cultured broth. Its immunosuppressive activity was reversed by adding arachidonic acid, an eicosanoid biosynthesis precursor. Furthermore, organic extracts of X. ehlersii KSY using hexane or ethyl acetate showed inhibitory activity against cellular immune responses of S. exigua larvae. Arachidonic acid addition to S. exigua larvae infected with X. ehlersii significantly rescued the survival rate of target insect. Of the two bacteria isolated from S. longicaudum GNUS101, only X. ehlersii induced immunosuppression of target insect by inhibiting eicosanoid biosynthesis.
Collapse
Affiliation(s)
- Hyeonghwan Kim
- Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA, Wanju 55365, Republic of Korea
| | - Soyeon Keum
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Ariful Hasan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Hyoil Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | | | - Dongwoon Lee
- School of Environmental Ecology and Tourism, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
9
|
Yadav S, Eleftherianos I. The Imaginal Disc Growth Factors 2 and 3 participate in the Drosophila response to nematode infection. Parasite Immunol 2018; 40:e12581. [PMID: 30107045 DOI: 10.1111/pim.12581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/11/2018] [Accepted: 08/09/2018] [Indexed: 01/13/2023]
Abstract
The Drosophila imaginal disc growth factors (IDGFs) induce the proliferation of imaginal disc cells and terminate cell proliferation at the end of larval development. However, the participation of Idgf-encoding genes in other physiological processes of Drosophila including the immune response to infection is not fully understood. Here, we show the contribution of Idgf2 and Idgf3 in the Drosophila response to infection with Steinernema carpocapsae nematodes carrying or lacking their mutualistic Xenorhabdus nematophila bacteria (symbiotic or axenic nematodes, respectively). We find that Idgf2 and Idgf3 are upregulated in Drosophila larvae infected with symbiotic or axenic Steinernema and inactivation of Idgf2 confers a survival advantage to Drosophila larvae against axenic nematodes. Inactivation of Idgf2 induces the Imd and Jak/Stat pathways, whereas inactivation of Idgf3 induces the Imd, Toll and Jak/Stat pathways. We also show that inactivation of the Imd pathway receptor PGRP-LE upregulates Idgf2 against Steinernema nematode infection. Finally, we demonstrate that inactivation of Idgf3 induces the recruitment of larval haemocytes in response to Steinernema. Our results indicate that Idgf2 and Idgf3 might be involved in different yet crucial immune functions in the Drosophila antinematode immune response. Similar findings will promote the development of new targets for species-specific pest control strategies.
Collapse
Affiliation(s)
- Shruti Yadav
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
10
|
Ahmed S, Kim Y. Differential immunosuppression by inhibiting PLA 2 affects virulence of Xenorhabdus hominickii and Photorhabdus temperata temperata. J Invertebr Pathol 2018; 157:136-146. [PMID: 29802883 DOI: 10.1016/j.jip.2018.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022]
Abstract
Immunity negatively influences bacterial pathogenicity. Eicosanoids mediate both cellular and humoral immune responses in insects. This study tested a hypothesis that differential bacterial virulence of Xenorhabdus/Photorhabdus is dependent on their inhibitory activity against phospholipase A2 (PLA2) activity. P. temperata subsp. temperata ('Ptt') was more than 40 times more potent than X. hominickii ('Xh'). Although both bacteria suppressed cellular immune responses, Ptt infection suppressed hemocyte nodule formation much more than Xh infection. Their differential immunosuppression appeared to be induced by their secondary metabolites because organic extracts of Ptt-cultured broth exhibited higher inhibitory activities against cellular immune responses than Xn-cultured broth extracts. Humoral immune responses were analyzed by measuring expression levels of 11 antimicrobial peptide (AMP) genes. Among inducible AMPs in hemocytes and fat body, higher number and more kinds of AMPs exhibited lower expression levels in Ptt infection than those in Xh infection. Suppressed immune responses induced by Ptt or Xh infection were significantly rescued by the addition of a catalytic product of PLA2, suggesting that PLA2 was a common inhibitory target. In fact, Ptt infection inhibited PLA2 activity more strongly than Xh infection. RNA interference of a PLA2 gene decreased its expression and significantly increased bacterial virulence. Moreover, addition of PLA2 inhibitor to Xh infection enhanced its virulence, similar to virulence level of Ptt infection. These results suggest that variation in Xenorhabdus/Photorhabdus bacterial virulence can be explained by their differential inhibitory activities against host insect PLA2.
Collapse
Affiliation(s)
- Shabbir Ahmed
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
11
|
Kumari P, Mahapatro GK, Banerjee N, Sarin NB. A novel pilin subunit from Xenorhabdus nematophila, an insect pathogen, confers pest resistance in tobacco and tomato. PLANT CELL REPORTS 2015; 34:1863-72. [PMID: 26164296 DOI: 10.1007/s00299-015-1833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/30/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE Overexpression of insecticidal pilin subunit from Xenorhabdus nematophila protects transgenic tobacco and tomato plants against Helicoverpa armigera. Xenorhabdus nematophila is a pathogenic bacterium producing toxins that kill the larval host. Previously, we characterized a pilin subunit of X. nematophila which was found to be a pore-forming toxin and cytotoxic to the larval hemocytes of Helicoverpa armigera by causing agglutination and lysis of the cells. In the present study, we report the efficacy of the insecticidal pilin subunit expressed in transgenic tobacco and tomato plants for control against H. armigera. A 537 bp mrxA gene encoding the 17 kDa insecticidal pilin subunit was transferred into the genome of tobacco and tomato, respectively, via Agrobacterium-mediated transformation. The stable integration of the 537 bp mrxA gene in the transgenic plants was confirmed by Southern blot analysis and expression of mrxA gene was confirmed by RT-PCR and Western blot analyses. The transgenic plants appeared healthy and phenotypically normal but proved toxic to the insects in insect bioassays, showing 100% insect mortality and reduced damage of the transgenic plants. Based on these observations, it is suggested that pilin subunit can be used as a potential candidate for control of H. armigera and may open new strategies for pest control in agricultural plants.
Collapse
Affiliation(s)
- Punam Kumari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gagan Kumar Mahapatro
- Division of Entomology, Indian Agricultural Research Institute, PUSA, New Delhi, 110012, India
| | - Nirupama Banerjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Neera Bhalla Sarin
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Kumari P, Mahapatro GK, Banerjee N, Sarin NB. Ectopic expression of GroEL from Xenorhabdus nematophila in tomato enhances resistance against Helicoverpa armigera and salt and thermal stress. Transgenic Res 2015; 24:859-73. [PMID: 25958082 DOI: 10.1007/s11248-015-9881-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022]
Abstract
The GroEL homolog XnGroEL protein of Xenorhabdus nematophila belongs to a highly conserved family of molecular chaperones/heat shock proteins (Hsps). XnGroEL was shown to possess oral insecticidal activity against a major crop pest Helicoverpa armigera. Under normal conditions, the Hsps/chaperones facilitate folding, assembly, and translocation of cellular proteins, while in stress conditions they protect proteins from denaturation. In this study, we describe generation of transgenic tomato plants overexpressing insecticidal XnGroEL protein and their tolerance to biotic and abiotic stresses. Presence of XnGroEL in the transgenic tomato lines conferred resistance against H. armigera showing 100% (p ≤ 0.001) mortality of neonates. In addition, XnGroEL provided thermotolerance and protection against high salt concentration to the tomato plants. Expression of XnGroEL minimized photo-oxidation of chlorophyll and reduced oxidative damage of cell membrane system of the plants under heat and salt stress. The enhanced tolerance to abiotic stresses correlated with increase in the anti-oxidative enzyme activity and reduced H2O2 accumulation in transgenic tomato plants. The variety of beneficial properties displayed by XnGroEL protein provides an opportunity for value addition and improvement of crop productivity.
Collapse
Affiliation(s)
- Punam Kumari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gagan Kumar Mahapatro
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nirupama Banerjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Neera Bhalla Sarin
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
13
|
Li SS, Hu X, Zhao H, Li YX, Zhang L, Gong LJ, Guo J, Zhao HB. Quantitative analysis of cellular proteome alterations of Pseudomonas putida to naphthalene-induced stress. Biotechnol Lett 2015; 37:1645-54. [DOI: 10.1007/s10529-015-1828-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
|
14
|
Kupper M, Gupta SK, Feldhaar H, Gross R. Versatile roles of the chaperonin GroEL in microorganism-insect interactions. FEMS Microbiol Lett 2014; 353:1-10. [DOI: 10.1111/1574-6968.12390] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Maria Kupper
- Chair of Microbiology; Biocenter; University of Würzburg; Würzburg Germany
| | - Shishir K. Gupta
- Chair of Microbiology; Biocenter; University of Würzburg; Würzburg Germany
- Chair of Bioinformatics; Biocenter; University of Würzburg; Würzburg Germany
| | - Heike Feldhaar
- Animal Ecology I; Bayreuth Center for Environment and Ecology Research (BayCEER); University of Bayreuth; Bayreuth Germany
| | - Roy Gross
- Chair of Microbiology; Biocenter; University of Würzburg; Würzburg Germany
| |
Collapse
|