1
|
Takamoto K, Inazu K, Nakai S, Inoue K, Tsuda M. Do confined field trials add value for the environment risk assessment of genetically modified Brassica napus L. in Japan? Transgenic Res 2025; 34:6. [PMID: 39777564 PMCID: PMC11706835 DOI: 10.1007/s11248-024-00425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/30/2024] [Indexed: 01/11/2025]
Abstract
The environmental risk assessment (ERA) of genetically modified (GM) crops in Japan requires collecting data from a comparative study of a GM and non-GM control in an in-country confined field trial (CFT). This in-country CFT requirement is used to address concerns that differences in the local environmental conditions may lead to differences in growth and/or risks of GM crops. However, this requirement for in-country CFT has recently been exempted for certain GM maize and GM cotton traits, and instead CFT data from other countries are used to inform the ERA of these GM events. However, in-country CFTs continue to be required for GM B. napus. Our objective is to assess whether using B. napus as a host crop increases the potential for differences between GM B. napus and conventional B. napus that may have an impact on biodiversity occurring only under the Japanese environment. In this paper agronomic data was compiled from seven local CFTs of GM B. napus events to assess the potential for differences between GM and non-GM B. napus for three key areas; competitiveness, potential to produce harmful substances, and outcrossing. Considering these elements, the need for conducting CFTs locally for ERA of future GM B. napus traits is discussed. The assessment concluded that conducting CFT locally is not necessary for GM B. napus events if traits do not bring competitive advantage or produce harmful substances only under Japanese environment.
Collapse
Affiliation(s)
- Kei Takamoto
- Bayer CropScience K.K., Marunouchi Kitaguchi Bldg, 1-6-5, Marunouchi, Chiyoda-ku, Tokyo, 100-8262, Japan
- Degree Programs in Life and Earth Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kaori Inazu
- BASF Japan Ltd., 3-4-4 Nihonbashi Muromachi, Chuo-ku, Tokyo, 103-0022, Japan
| | - Shuichi Nakai
- Bayer CropScience K.K., Marunouchi Kitaguchi Bldg, 1-6-5, Marunouchi, Chiyoda-ku, Tokyo, 100-8262, Japan
| | - Koichi Inoue
- BASF Japan Ltd., 3-4-4 Nihonbashi Muromachi, Chuo-ku, Tokyo, 103-0022, Japan
| | - Mai Tsuda
- Faculty of Food and Nutritional Sciences, Toyo University, 48-1 Oka, Asaka-shi, Saitama, 351-8510, Japan.
| |
Collapse
|
2
|
Chege P, Njagi J, Komen J, Ngure G, Muriuki J, Karembu M. Best practices for acceptability of GM crops field trials conclusions: lessons for Africa. GM CROPS & FOOD 2024; 15:222-232. [PMID: 38980826 PMCID: PMC11236291 DOI: 10.1080/21645698.2024.2376415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
The ability to transfer information about the performance, safety, and environmental impacts of a genetically modified (GM) crop from confined field trials (CFTs) conducted in one location to another is increasingly gaining importance in biosafety regulatory assessment and decision-making. The CFT process can be expensive, time-consuming, and logistically challenging. Data transportability can help overcome these challenges by allowing the use of data obtained from CFTs conducted in one country to inform regulatory decision-making in another country. Applicability of transported CFT data would be particularly beneficial to the public sector product developers and small enterprises that develop innovative GM events but cannot afford to replicate redundant CFTs, as well as regulatory authorities seeking to improve the deployment of limited resources. This review investigates case studies where transported CFT data have successfully been applied in biosafety assessment and decision-making, with an outlook of how African countries could benefit from a similar approach.
Collapse
Affiliation(s)
- Paul Chege
- Program for Biosafety Systems (PBS), International Service for the Acquisition of Agri-biotech Applications (ISAAA AfriCenter), Nairobi, Kenya
- Program for Biosafety Systems (PBS), International Food Policy Institute (IFPRI), Washington, WA, USA
| | - Julia Njagi
- Inspection, National Biosafety Authority (NBA), Nairobi, Kenya
| | - John Komen
- Program for Biosafety Systems (PBS), International Food Policy Institute (IFPRI), Washington, WA, USA
| | - Godfrey Ngure
- Program for Biosafety Systems (PBS), International Service for the Acquisition of Agri-biotech Applications (ISAAA AfriCenter), Nairobi, Kenya
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - John Muriuki
- Environmental Science, Kenyatta University, Nairobi, Kenya
| | - Margaret Karembu
- Program for Biosafety Systems (PBS), International Service for the Acquisition of Agri-biotech Applications (ISAAA AfriCenter), Nairobi, Kenya
| |
Collapse
|
3
|
Nakai S, Roberts AF, Simmons AR, Hiratsuka K, Miano DW, Vesprini F. Introduction and scientific justification of data transportability for confined field testing for the ERA of GM plants. Front Bioeng Biotechnol 2024; 12:1359388. [PMID: 38449673 PMCID: PMC10915251 DOI: 10.3389/fbioe.2024.1359388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
The concept of Data Transportability (DT) of Confined Field Testing (CFT) to support the Environmental Risk Assessment (ERA) of Genetically Modified (GM) plants was first introduced in the literature by Garcia-Alonso et al., in 2014. Since then, DT has been discussed in many countries and regions as a concept to prevent duplication of regulatory studies without compromising quality of the ERA. However, despite its usefulness and scientific justification, DT is not well adopted at this time and many regulatory agencies around the world require additional in-country CFT be conducted before approving GM plants. Based on the current circumstances, the authors organized a parallel session entitled "Introduction and Scientific Justification of DT for CFT for the ERA of GM plants" at 16th ISBR (the International Society for Biosafety Research). This session mainly consisted of the following three parts. The first two speakers, Andrew Roberts and Abigail Simmons provided an overview of DT and examples of conditions for the transportability of field data/conclusions advocated in the peer-reviewed scientific journals. Next, the current status of DT adoption in some countries/regions such as Japan and Africa, and a theoretical case study for Argentina were introduced by Kazuyuki Hiratsuka, Douglas Miano, and Facundo Vesprini, respectively. Lastly, a risk hypothesis-based approach for DT which was developed in advance by the five speakers of this parallel session, was introduced. During the discussion, there was a common understanding that transition to the risk hypothesis-based approach for DT was scientifically appropriate, considering the accumulated evidences that several countries have conducted confirmatory local CFT for more than 20 years but they have not detected any differences related to the ERA assessment endpoints in GM crops. The risk hypothesis-based approach for DT introduced here is expected to play an important role in discussions on the implementation of DT in various parts of the world in the future.
Collapse
Affiliation(s)
- Shuichi Nakai
- Bayer CropScience K.K., Tokyo, Japan
- International Life Science Institute Japan, Tokyo, Japan
| | | | | | - Kazuyuki Hiratsuka
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Douglas W. Miano
- Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya
| | | |
Collapse
|
4
|
Melnick RL, Jarvis L, Hendley P, Garcia-Alonso M, Metzger MJ, Ramankutty N, Teem JL, Roberts A. GEnZ explorer: a tool for visualizing agroclimate to inform research and regulatory risk assessment. Transgenic Res 2023; 32:321-337. [PMID: 37278871 PMCID: PMC10409678 DOI: 10.1007/s11248-023-00354-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Confined field trials (CFT) of genetically engineered (GE) crops are used to generate data to inform environmental risk assessments (ERA). ERAs are required by regulatory authorities before novel GE crops can be released for cultivation. The transportability of CFT data to inform risk assessment in countries other than those where the CFT was conducted has been discussed previously in an analysis showing that the primary difference between CFT locations potentially impacting trial outcomes is the physical environment, particularly the agroclimate. This means that data from trials carried out in similar agroclimates could be considered relevant and sufficient to satisfy regulatory requirements for CFT data, irrespective of the country where the CFTs are conducted. This paper describes the development of an open-source tool to assist in determining the transportability of CFT data. This tool provides agroclimate together with overall crop production information to assist regulators and applicants in making informed choices on whether data from previous CFTs can inform an environmental risk assessment in a new country, as well as help developers determine optimal locations for planning future CFTs. The GEnZ Explorer is a freely available, thoroughly documented, and open-source tool that allows users to identify the agroclimate zones that are relevant for the production of 21 major crops and crop categories or to determine the agroclimatic zone at a specific location. This tool will help provide additional scientific justification for CFT data transportability, along with spatial visualization, to help ensure regulatory transparency.
Collapse
Affiliation(s)
| | - Larissa Jarvis
- McGill University, 845 Sherbrooke Street West, Montréal, QC, Canada
| | - Paul Hendley
- Phasera Ltd., 7 Kenilworth Avenue, Bracknell, Berkshire, UK
| | | | - Marc J Metzger
- School of Geosciences, Geography and the Lived Environment, The University of Edinburgh, Edinburgh, Scotland
| | - Navin Ramankutty
- School of Public Policy and Global Affairs, The University of British Columbia, Vancouver, BC, Canada
| | - John L Teem
- Genetic Biocontrols LLC, Tallahassee, FL, USA
| | - Andrew Roberts
- Agriculture and Food Systems Institute, Washington, DC, USA.
| |
Collapse
|
5
|
A New Approach for Environmental Risk Assessments of Living Modified Organisms in South Korea. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As the development and use of living modified organisms (LMOs) steadily increase, new risk assessment methods that reflect domestic natural ecosystems are being developed. Although LM plants are fundamentally necessary for environmental risk assessment, the introduced gene products and LMO proteins can replace transgenic plants. However, their use is problematic because of instability and indirect assessment data issues. This study proposes a risk assessment tool and scheme for introducing LMO proteins into genetically modified crops. The agroinfiltration method for transient LMO gene expression in plants is a practical tool which can be used to rapidly verify the putative risks of LMO proteins against insects using an LM crop mimic plant with a stably expressed LMO protein. This study used Nicotiana tabacum leaves, which transiently but stably expressed the insecticidal LMO protein Vip3Aa, for LMO risk assessments against Spodoptera litura. The Vip3Aa protein was stably expressed for 5 d in the agroinfiltrated plants, and the protein was active against target insects for environmental LMO risk assessments. In the toxicity evaluation of Vip3Aa-expressing plants against S. litura, the number of deaths was higher in the Vip3Aa-infiltrated N. tabacum-fed group than that in the recombinant Vip3Aa-fed group. In addition, the cumulative number of deaths in the infiltration leaf-fed group was approximately 12-fold higher than that in the protein-fed group under low dosage conditions. This study aimed to develop a transient expression model which can be used to evaluate whether the overall risk of LMO protein is acceptable for use. These results support the usefulness of the transient expression model using an agroinfiltration method as a rapid risk validation tool for LMO proteins against herbivorous insects before producing transgenic plants.
Collapse
|
6
|
Vesprini F, Whelan AI, Goberna MF, Murrone ML, Barros GE, Frankow A, Godoy P, Lewi DM. Update of Argentina’s Regulatory Policies on the Environmental Risk Assessment. Front Bioeng Biotechnol 2022; 9:834589. [PMID: 35174149 PMCID: PMC8841517 DOI: 10.3389/fbioe.2021.834589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 01/08/2023] Open
Abstract
The Environmental Risk Assessment (ERA) of genetically modified (GM) crops in Argentina is carried out by the National Advisory Commission on Agricultural Biotechnology (CONABIA) and the Innovation and Biotechnology Coordination (CIyB). Both have a large experience with this assessment, since 1991, when CONABIA was created. The continuous support to biotechnology as a state policy and as part of the decision to encourage developers in the regulatory process has helped make progress in the revision of the regulations. The experience gained during the last 30 years and the worldwide scientific advances supported the bases to update the regulatory framework. Focusing on the biosafety strengthening and the improvement of the applicant’s experience in the GM crops evaluation process, during 2020 and 2021, the ERA went through a reviewing process. Some important modifications were made, such as (i) the assessment of stacked GM crops with focus on the possible interactions between transgenes and the expression products, (ii) the strengthening of the ERA taking into account the transportability of data and conclusions from the Confined Field Trials (CFTs), (iii) the adoption of Familiarity and History of Safe Use (HOSU) concepts on the risk assessment of the expression products, (iv) the special considerations for the unintended effects of insertional sites, and (v) as a post commercial release of GM crops, the Insect Resistance Management Plan (IRMP) was reformulated. These novel approaches enhance the ERA; they make it more efficient by applying the science criteria and the accumulated experience and scientific bibliography on the topic.
Collapse
|
7
|
Vesprini F, Maggi AI, López Olaciregui M, Módena NA. Transportability of Conclusions From Confined Field Trials: A Case Study Using the Virus Resistant Transgenic Bean Developed in Brazil. Front Bioeng Biotechnol 2020; 8:815. [PMID: 32850707 PMCID: PMC7396523 DOI: 10.3389/fbioe.2020.00815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/24/2020] [Indexed: 11/30/2022] Open
Abstract
The conceptual framework for Data Transportability, builds on the premise that well-designed studies conducted for the environmental and food/feed risk assessment of transgenic crops may be transportable across geographies. Beyond individual data, provided that certain criteria are met, the general conclusions of comparative assessments of a transgenic crop with its conventional counterpart would also be transportable. In spite of this, many regulatory agencies still require in-country field trials to complete risk assessments of transgenic crops. A sub-team from ILSI Argentina’s (International Life Sciences Institute, Argentina. www.ilsi.org.ar) Biotechnology Working Group tested the applicability of the transportability concept to the case of the golden mosaic virus-resistant transgenic bean, developed by EMBRAPA (EMBRAPA: Brazilian Agricultural Research Corporation). To this end, regulatory confined field trials (CFTs) carried out in Brazil to gather agro-phenotypic and compositional data were analyzed. The transportability of the conclusions of these studies to the bean cropping areas in Argentina was assessed as a conceptual exercise (with no intention to conclude on the biosafety of the common bean event). Comparative studies included the transgenic bean and its conventional parental line and were run in different agroecological environments so that any relevant differences could be observed. The main criteria to enable transportability were set by the sub-team and found to be met by the CFTs carried out in Brazil to inform a potential risk evaluation for Argentina.
Collapse
Affiliation(s)
- Facundo Vesprini
- Biotechnology Directorate, Argentinian Ministry of Agriculture, Livestock and Fisheries, Buenos Aires, Argentina.,ILSI Argentina, Working Group on Biotechnology, Buenos Aires, Argentina
| | - Andrés Ignacio Maggi
- ILSI Argentina, Working Group on Biotechnology, Buenos Aires, Argentina.,National Service for Agrifood Health and Quality (SENASA), Buenos Aires, Argentina
| | - Magdalena López Olaciregui
- ILSI Argentina, Working Group on Biotechnology, Buenos Aires, Argentina.,Corteva Agriscience, Buenos Aires, Argentina
| | - Natalia Andrea Módena
- ILSI Argentina, Working Group on Biotechnology, Buenos Aires, Argentina.,Bayer Crop Science, Buenos Aires, Argentina
| |
Collapse
|
8
|
Ren Z, Zagortchev L, Ma J, Yan M, Li J. Predicting the potential distribution of the parasitic Cuscuta chinensis under global warming. BMC Ecol 2020; 20:28. [PMID: 32386506 PMCID: PMC7210669 DOI: 10.1186/s12898-020-00295-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/25/2020] [Indexed: 01/09/2023] Open
Abstract
Background The climate is the dominant factor that affects the distribution of plants. Cuscuta chinensis is a stem holoparasitic plant without leaves or roots, which develops a haustorium and sucks nutrients from host plants. The potential distribution of the parasitic plant C. chinensis has not been predicted to date. This study used Maxent modeling to predict the potential global distribution of C. chinensis, based on the following six main bioclimatic variables: annual mean temperature, isothermality, temperature seasonality, precipitation seasonality, precipitation of the warmest quarter, and precipitation of the coldest quarter. Results The optimal annual average temperature and isothermality of C. chinensis ranged from 4 to 37 °C and less than 45, respectively, while the optimal temperature seasonality and precipitation seasonality ranged from 4000 to 25,000 and from 50 to 130, respectively. The optimal precipitation of the warmest season ranged from 300 to 1000 mm and from 2500 to 3500 mm, while that of the coldest season was less than 2000 mm. In Asia, C. chinensis is mainly distributed at latitudes ranging from 20° N to 50° N. During three specific historical periods (last glacial maximum, mid-Holocene, and 1960–1990) the habitats suitable for C. chinensis were concentrated in the central, northern, southern, and eastern parts of China. From the last glacial maximum to the mid-Holocene, the total area with suitability of 0.5–1 increased by 0.0875 million km2; however, from the mid-Holocene to 1960–1990, the total area with suitability of 0.5–1 decreased by 0.0759 million km2. The simulation results of habitat suitability in the two representative concentration pathways (RCP) 2.6 (i.e., the low greenhouse gas emissions pathway) and 8.5 (i.e., the high greenhouse gas emissions pathway) indicate that the habitat suitability of C. chinensis decreased in response to the warming climate. Compared with RCP2.6, areas with averaged suitability and high suitability for survival (RCP8.5) decreased by 0.18 million km2. Conclusion Suitable habitats of C. chinensis are situated in central, northern, southern, and eastern China. The habitat suitability of C. chinensis decreased in response to the warming climate. These results provide a reference for the management and control of C. chinensis.
Collapse
Affiliation(s)
- Zichun Ren
- School of Life Science, Shanxi Normal University, Linfen, 041000, China.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Lyuben Zagortchev
- Department of Biochemistry, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tsankovblvd., 1164, Sofia, Bulgaria
| | - Junxia Ma
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Ming Yan
- School of Life Science, Shanxi Normal University, Linfen, 041000, China.
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
9
|
Svobodová Z, Skoková Habuštová O, Spitzer L, Sehnal F. Importance of functional classification in the use of carabids for the environmental risk assessment of the GE crops and other agricultural practices. INSECT SCIENCE 2020; 27:375-388. [PMID: 30260074 DOI: 10.1111/1744-7917.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/20/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Carabids (Coleoptera: Carabidae) seem to be suitable bioindicators of the environmental impacts of novel agrotechnologies, including deployment of the genetically engineered (GE) crops. In this article, we describe our effort to employ carabids in the environmental risk assessment (ERA). GE maize MON88017, its near-isogenic hybrid nontreated or treated with the soil insecticide chlorpyrifos, and two reference hybrids were used to compare three different ways how to utilize carabids in ERA. The analysis of abundance of all captured carabids or of the most abundant carabid species did not disclose any differences between the treatments. The analysis based on the categories of functional traits revealed distinct features of some treatments and proved suitable for ERA because it permitted field data transportability in spite of different species compositions. Our results indicate that GE maize has no detrimental environmental effect. On the other hand, we found significant trends toward lower abundance and lower species number (including analysis of all carabid species together) in plots treated with the insecticide, and some tendencies to higher abundance and higher species number in plots sown with the reference hybrid PR38N86. Using functional group indicators allows identification of unintended changes in ecological functions of agroecosystem and comparability across geographies. We recommend data evaluation at the level of the categories of functional traits in ERA of GE crops and other agricultural practices.
Collapse
Affiliation(s)
- Zdeňka Svobodová
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| | - Oxana Skoková Habuštová
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| | - Lukáš Spitzer
- Museum of the Moravian Wallachia Region, Vsetín, Czech Republic
| | - František Sehnal
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
10
|
Matsushita A, Goto H, Takahashi Y, Tsuda M, Ohsawa R. Consideration of familiarity accumulated in the confined field trials for environmental risk assessment of genetically modified soybean (Glycine max) in Japan. Transgenic Res 2020; 29:229-242. [PMID: 31997144 PMCID: PMC7067755 DOI: 10.1007/s11248-020-00193-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/21/2020] [Indexed: 11/27/2022]
Abstract
To date, there have been 160 regulatory approvals for environmental safety in Japan for the major genetically modified (GM) crops, including corn, soybean, canola and cotton. Confined field trials (CFTs) have been conducted in Japan for all single events, which contain various traits. The accumulated information from these previously conducted CFTs, as well as the agronomic field study data from other countries, provides a rich source of information to establish "familiarity" with the crops. This familiarity can be defined as the knowledge gained through experience over time, and used to inform the environmental risk assessments (ERA) of new GM crops in Japan. In this paper, we compiled agronomic data from the CFTs performed in Japan for 11 GM soybean events which obtained food, feed and environmental safety approvals from regulatory agencies in Japan. These CFTs were conducted by multiple developers according to Japan regulations to support the ERA of these GM soybean, covering standard measurement endpoints evaluated across developers in Japan. With this dataset, we demonstrate how familiarity gained from the CFTs of GM soybeans in Japan can be used to inform on the ERA of new GM soybean events. By leveraging this concept of familiarity, we discuss potential enhancements to the ERA process for GM soybean events in Japan.
Collapse
Affiliation(s)
- Akane Matsushita
- Dupont Production Agriscience K.K., Sanno Park Tower, 2-11-1, Nagata-cho, Chiyoda-ku, Tokyo, 100-6110, Japan.
| | - Hidetoshi Goto
- Bayer CropScience K.K., Marunouchi Kitaguchi Bldg, 1-6-5, Marunouchi, Chiyoda-ku, Tokyo, 100-8262, Japan
| | - Yasuyuki Takahashi
- Dow AgroSciences Japan Ltd., Sanno Park Tower, 2-11-1, Nagata-cho, Chiyoda-ku, Tokyo, 100-6110, Japan
| | - Mai Tsuda
- Gene Research Center, Tsukuba Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryo Ohsawa
- Gene Research Center, Tsukuba Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
11
|
González FG, Rigalli N, Miranda PV, Romagnoli M, Ribichich KF, Trucco F, Portapila M, Otegui ME, Chan RL. An Interdisciplinary Approach to Study the Performance of Second-generation Genetically Modified Crops in Field Trials: A Case Study With Soybean and Wheat Carrying the Sunflower HaHB4 Transcription Factor. FRONTIERS IN PLANT SCIENCE 2020; 11:178. [PMID: 32210989 PMCID: PMC7069416 DOI: 10.3389/fpls.2020.00178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/05/2020] [Indexed: 05/22/2023]
Abstract
Research, production, and use of genetically modified (GM) crops have split the world between supporters and opponents. Up to now, this technology has been limited to the control of weeds and pests, whereas the second generation of GM crops is expected to assist farmers in abiotic stress tolerance or improved nutritional features. Aiming to analyze this subject holistically, in this presentation we address an advanced technology for drought-tolerant GM crops, upscaling from molecular details obtained in the laboratory to an extensive network of field trials as well as the impact of the introduction of this innovation into the market. Sunflower has divergent transcription factors, which could be key actors in the drought response orchestrating several signal transduction pathways, generating an improved performance to deal with water deficit. One of such factors, HaHB4, belongs to the homeodomain-leucine zipper family and was first introduced in Arabidopsis. Transformed plants had improved tolerance to water deficits, through the inhibition of ethylene sensitivity and not by stomata closure. Wheat and soybean plants expressing the HaHB4 gene were obtained and cropped across a wide range of growing conditions exhibiting enhanced adaptation to drought-prone environments, the most important constraint affecting crop yield worldwide. The performance of wheat and soybean, however, differed slightly across mentioned environments; whereas the improved behavior of GM wheat respect to controls was less dependent on the temperature regime (cool or warm), differences between GM and wild-type soybeans were remarkably larger in warmer compared to cooler conditions. In both species, these GM crops are good candidates to become market products in the near future. In anticipation of consumers' and other stakeholders' interest, spectral analyses of field crops have been conducted to differentiate these GM crops from wild type and commercial cultivars. In this paper, the potential impact of the release of such market products is discussed, considering the perspectives of different stakeholders.
Collapse
Affiliation(s)
| | - Nicolás Rigalli
- CIFASIS, Universidad Nacional de Rosario—CONICET, Rosario, Argentina
| | - Patricia Vivian Miranda
- Instituto de Agrobiotecnología Rosario (INDEAR)/BIOCERES, Rosario, Argentina
- CONICET, Buenos Aires, Argentina
| | - Martín Romagnoli
- CIFASIS, Universidad Nacional de Rosario—CONICET, Rosario, Argentina
| | - Karina Fabiana Ribichich
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral—CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Federico Trucco
- Instituto de Agrobiotecnología Rosario (INDEAR)/BIOCERES, Rosario, Argentina
| | | | - María Elena Otegui
- CONICET-INTA-FAUBA, Estación Experimental Pergamino, Facultad de Agronomía Universidad de Buenos Aires, Pergamino, Argentina
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral—CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| |
Collapse
|
12
|
Capalbo DMF, Macdonald P, Fernandes PMB, Rubinstein C, Vicién C. Familiarity in the Context of Risk Assessment of Transgenic Crops: Focus on Some Countries in the Americas. Front Bioeng Biotechnol 2020; 7:463. [PMID: 32047744 PMCID: PMC6997124 DOI: 10.3389/fbioe.2019.00463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/19/2019] [Indexed: 11/27/2022] Open
Abstract
Problem formulation is the formal opening stage of a risk assessment that determines its purpose and scope and hence guides the gathering of information data. The concepts of familiarity and history of safe use are an integral part of problem formulation. These concepts do not replace the case-by-case approach and are not taken as safety standards but are valuable components of the process that shape the generation of plausible, testable risk hypotheses. The International Life Sciences Institutes in Brazil and Argentina have facilitated numerous discussions on the scientific principles for risk assessment of transgenic crops in the Latin American region in the past 5–6 years. The session held at ISBR 15th elaborated on the familiarity concept and derived tools and their role in the evolution of risk evaluation criteria. Examples of how different countries in the Americas interpret and apply these conceptual tools show that familiarity is a valuable concept, although terms are very often confused and vaguely defined. Formalizing these terms with clear definitions and scope of application in guidelines and regulatory documents would reduce ambiguity, enhance predictability, and add transparency to the evaluation processes.
Collapse
Affiliation(s)
- Deise M F Capalbo
- Embrapa Environment and International Life Sciences Institute, São Paulo, Brazil
| | | | | | - Clara Rubinstein
- Bayer Crop Science and International Life Sciences Institute, Buenos Aires, Argentina
| | - Carmen Vicién
- University of Buenos Aires and International Life Sciences Institute, Buenos Aires, Argentina
| |
Collapse
|
13
|
Raybould A. Hypothesis-Led Ecological Risk Assessment of GM Crops to Support Decision-Making About Product Use. GMOS 2020. [DOI: 10.1007/978-3-030-53183-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Babar U, Nawaz MA, Arshad U, Azhar MT, Atif RM, Golokhvast KS, Tsatsakis AM, Shcerbakova K, Chung G, Rana IA. Transgenic crops for the agricultural improvement in Pakistan: a perspective of environmental stresses and the current status of genetically modified crops. GM CROPS & FOOD 2019; 11:1-29. [PMID: 31679447 DOI: 10.1080/21645698.2019.1680078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transgenic technologies have emerged as a powerful tool for crop improvement in terms of yield, quality, and quantity in many countries of the world. However, concerns also exist about the possible risks involved in transgenic crop cultivation. In this review, literature is analyzed to gauge the real intensity of the issues caused by environmental stresses in Pakistan. In addition, the research work on genetically modified organisms (GMOs) development and their performance is analyzed to serve as a guide for the scientists to help them select useful genes for crop transformation in Pakistan. The funding of GMOs research in Pakistan shows that it does not follow the global trend. We also present socio-economic impact of GM crops and political dimensions in the seed sector and the policies of the government. We envisage that this review provides guidelines for public and private sectors as well as the policy makers in Pakistan and in other countries that face similar environmental threats posed by the changing climate.
Collapse
Affiliation(s)
- Usman Babar
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Amjad Nawaz
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Usama Arshad
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.,Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
| | - Kirill S Golokhvast
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Aristides M Tsatsakis
- Department of Toxicology and Forensics, School of Medicine, University of Crete, Heraklion, Greece
| | - Kseniia Shcerbakova
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Republic of Korea
| | - Iqrar Ahmad Rana
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan.,Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
15
|
Rüdelsheim P, Dumont P, Freyssinet G, Pertry I, Heijde M. Off-Patent Transgenic Events: Challenges and Opportunities for New Actors and Markets in Agriculture. Front Bioeng Biotechnol 2018; 6:71. [PMID: 29915785 PMCID: PMC5994546 DOI: 10.3389/fbioe.2018.00071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
More than 20 years ago, the first genetically modified (GM) plants entered the seed market. The patents covering the first GM plants have begun to expire and these can now be considered as Off-Patent Events. Here we describe the challenges that will be faced by a Secondary Party by further use and development of these Off-Patent Events. Indeed, the conditions for Off-Patent Events are not available yet to form the basis for a new viable industry similar to the generic manufacturers of agrochemicals or pharmaceutical products, primarily because of (i) unharmonized global regulatory requirements for GM organisms, (ii) inaccessibility of regulatory submissions and data, and (iii) potential difficulties to obtain seeds and genetic material of the unique genotypes used to generate regulatory data. We propose certain adaptations by comparing what has been done in the agrochemical and pharmaceutical markets to facilitate the development of generics. Finally, we present opportunities that still exist for further development of Off-Patent Events in collaboration with Proprietary Regulatory Property Holders in emerging markets, provided (i) various countries approve these events without additional regulatory burdens (i.e., acceptance of the concept of data transportability), and (ii) local breeders agree to meet product stewardship requirements.
Collapse
Affiliation(s)
| | - Philippe Dumont
- Association Française des Biotechnologies Végétales, Paris, France
| | | | - Ine Pertry
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- International Plant Biotechnology Outreach, Vlaams Instituut voor Biotechnologie (VIB), Gent, Belgium
| | - Marc Heijde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- International Plant Biotechnology Outreach, Vlaams Instituut voor Biotechnologie (VIB), Gent, Belgium
| |
Collapse
|
16
|
Kahlon JG, Jacobsen HJ, Cahill JF, Hall LM. Antifungal genes expressed in transgenic pea (Pisum sativum L.) do not affect root colonization of arbuscular mycorrhizae fungi. MYCORRHIZA 2017; 27:683-694. [PMID: 28608039 DOI: 10.1007/s00572-017-0781-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Genetically modified crops have raised concerns about unintended consequences on non-target organisms including beneficial soil associates. Pea transformed with four antifungal genes 1-3 β glucanase, endochitinase, polygalacturonase-inhibiting proteins, and stilbene synthase is currently under field-testing for efficacy against fungal diseases in Canada. Transgenes had lower expression in the roots than leaves in greenhouse experiment. To determine the impact of disease-tolerant pea or gene products on colonization by non-target arbuscular mycorrhizae and nodulation by rhizobium, a field trial was established. Transgene insertion, as single gene or stacked genes, did not alter root colonization by arbuscular mycorrhiza fungus (AMF) or root nodulation by rhizobium inoculation in the field. We found no effect of transgenes on the plant growth and performance although, having a dual inoculant with both AMF and rhizobium yielded higher fresh weight shoot-to-root ratio in all the lines tested. This initial risk assessment of transgenic peas expressing antifungal genes showed no deleterious effect on non-target organisms.
Collapse
Affiliation(s)
- Jagroop Gill Kahlon
- Agricultural, Food and Nutritional Sciences, 410 Agriculture/Forestry, University of Alberta, Edmonton, T6K 2P5, Canada.
| | - Hans-Jörg Jacobsen
- Institute for Plant Genetics, Section of Plant Biotechnology, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - James F Cahill
- Department of Biological sciences, B717a, Biological Sciences Bldg., University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Linda M Hall
- Agricultural, Food and Nutritional Sciences, 410 Agriculture/Forestry, University of Alberta, Edmonton, T6K 2P5, Canada
| |
Collapse
|
17
|
Plant characterization of genetically modified maize hybrids MON-89Ø34-3 × MON-88Ø17-3, MON-89Ø34-3 × MON-ØØ6Ø3-6, and MON-ØØ6Ø3-6: alternatives for maize production in Mexico. Transgenic Res 2016; 26:135-151. [PMID: 27771867 PMCID: PMC5243880 DOI: 10.1007/s11248-016-9991-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/09/2016] [Indexed: 11/04/2022]
Abstract
Environmental risk assessment (ERA) of genetically modified (GM) crops is a process to evaluate whether the biotechnology trait(s) in a GM crop may result in increased pest potential or harm to the environment. In this analysis, two GM insect-resistant (IR) herbicide-tolerant maize hybrids (MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6) and one herbicide-tolerant GM hybrid (MON-ØØ6Ø3-6) were compared with conventional maize hybrids of similar genetic backgrounds. Two sets of studies, Experimental Phase and Pilot Phase, were conducted across five ecological regions (ecoregions) in Mexico during 2009–2013, and data were subject to meta-analysis. Results from the Experimental Phase studies, which were used for ERA, indicated that the three GM hybrids were not different from conventional maize for early stand count, days-to-silking, days-to-anthesis, root lodging, stalk lodging, or final stand count. Statistically significant differences were observed for seedling vigor, ear height, plant height, grain moisture, and grain yield, particularly in the IR hybrids; however, none of these phenotypic differences are expected to contribute to a biological or ecological change that would result in an increased pest potential or ecological risk when cultivating these GM hybrids. Overall, results from the Experimental Phase studies are consistent with those from other world regions, confirming that there are no additional risks compared to conventional maize. Results from Pilot Phase studies indicated that, compared to conventional maize hybrids, no differences were detected for the agronomic and phenotypic characteristics measured on the three GM maize hybrids, with the exception of grain moisture and grain yield in the IR hybrids. Since MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6 confer resistance to target insect pests, they are an alternative for farmers in Mexico to protect the crop from insect damage. Additionally, the herbicide tolerance conferred by all three GM hybrids enables more cost-effective weed management.
Collapse
|
18
|
Wach M, Hellmich RL, Layton R, Romeis J, Gadaleta PG. Dynamic role and importance of surrogate species for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms. Transgenic Res 2016; 25:499-505. [PMID: 26922585 PMCID: PMC4925689 DOI: 10.1007/s11248-016-9945-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/23/2016] [Indexed: 11/10/2022]
Abstract
Surrogate species have a long history of use in research and regulatory settings to understand the potentially harmful effects of toxic substances including pesticides. More recently, surrogate species have been used to evaluate the potential effects of proteins contained in genetically engineered insect resistant (GEIR) crops. Species commonly used in GEIR crop testing include beneficial organisms such as honeybees, arthropod predators, and parasitoids. The choice of appropriate surrogates is influenced by scientific factors such as the knowledge of the mode of action and the spectrum of activity as well as societal factors such as protection goals that assign value to certain ecosystem services such as pollination or pest control. The primary reasons for using surrogates include the inability to test all possible organisms, the restrictions on using certain organisms in testing (e.g., rare, threatened, or endangered species), and the ability to achieve greater sensitivity and statistical power by using laboratory testing of certain species. The acceptance of surrogate species data can allow results from one region to be applied or "transported" for use in another region. On the basis of over a decade of using surrogate species to evaluate potential effects of GEIR crops, it appears that the current surrogates have worked well to predict effects of GEIR crops that have been developed (Carstens et al. GM Crops Food 5:1-5, 2014), and it is expected that they should work well to predict effects of future GEIR crops based on similar technologies.
Collapse
Affiliation(s)
- Michael Wach
- Center for Environmental Risk Assessment, ILSI Research Foundation, Washington, DC, USA.
| | - Richard L Hellmich
- USDA-ARS, Corn Insects and Crop Genetics Research Unit and Department of Entomology, Iowa State University, Ames, IA, USA
| | | | - Jörg Romeis
- Agroscope Reckenholz-Tänikon Research Station ART, Zurich, Switzerland
| | - Patricia G Gadaleta
- Biotechnology Directorate, Ministry of Agriculture, Livestock and Fisheries, Buenos Aires, Argentina
| |
Collapse
|
19
|
Beker MP, Boari P, Burachik M, Cuadrado V, Junco M, Lede S, Lema MA, Lewi D, Maggi A, Meoniz I, Noé G, Roca C, Robredo C, Rubinstein C, Vicien C, Whelan A. Development of a construct-based risk assessment framework for genetic engineered crops. Transgenic Res 2016; 25:597-607. [PMID: 27339146 PMCID: PMC5023744 DOI: 10.1007/s11248-016-9955-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/05/2016] [Indexed: 01/07/2023]
Abstract
Experience gained in the risk assessment (RA) of genetically engineered (GE) crops since their first experimental introductions in the early nineties, has increased the level of familiarity with these breeding methodologies and has motivated several agencies and expert groups worldwide to revisit the scientific criteria underlying the RA process. Along these lines, the need to engage in a scientific discussion for the case of GE crops transformed with similar constructs was recently identified in Argentina. In response to this need, the Argentine branch of the International Life Sciences Institute (ILSI Argentina) convened a tripartite working group to discuss a science-based evaluation approach for transformation events developed with genetic constructs which are identical or similar to those used in previously evaluated or approved GE crops. This discussion considered new transformation events within the same or different species and covered both environmental and food safety aspects. A construct similarity concept was defined, considering the biological function of the introduced genes. Factors like environmental and dietary exposure, familiarity with both the crop and the trait as well as the crop biology, were identified as key to inform a construct-based RA process.
Collapse
Affiliation(s)
- M P Beker
- Bayer SA, Ricardo Gutierrez 3652, CP 1605, Munro, Buenos Aires, Argentina
| | - P Boari
- Biotechnology Directorate, Secretariat of Value Adding, Av. Paseo Colón 922, 2nd, Of. 247, CP 1063, Ciudad Autonoma de Buenos Aires, Argentina
| | - M Burachik
- Indear, Ocampo 210 bis Predio CCT Rosario (2000), Rosario, Santa Fe, Argentina
| | - V Cuadrado
- Monsanto Argentina, Maipu 1210, CP 1006, Ciudad Autonoma de Buenos Aires, Argentina
| | - M Junco
- National Agri Food Health and Quality Service, SENASA, Azopardo 1020, 1st, CP 1107, Ciudad Autonoma de Buenos Aires, Argentina
| | - S Lede
- BASF Argentina, Tucuman 1, 18th, CP 1049, Ciudad Autonoma de Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, Av. Rivadavia 1917, C1033AAJ, Ciudad Autonoma de Buenos Aires, Argentina
| | - M A Lema
- Biotechnology Directorate, Secretariat of Value Adding, Av. Paseo Colón 922, 2nd, Of. 247, CP 1063, Ciudad Autonoma de Buenos Aires, Argentina.,National University of Quilmes, Roque Sáenz Peña 352, CP 1876, Bernal, Buenos Aires, Argentina
| | - D Lewi
- National Agricultural Research Institute, INTA, Nicolas Repetto y de los Reseros s/n, CP 1686, Hurlingham, Buenos Aires, Argentina
| | - A Maggi
- National Agri Food Health and Quality Service, SENASA, Azopardo 1020, 1st, CP 1107, Ciudad Autonoma de Buenos Aires, Argentina
| | - I Meoniz
- National Agri Food Health and Quality Service, SENASA, Azopardo 1020, 1st, CP 1107, Ciudad Autonoma de Buenos Aires, Argentina
| | - G Noé
- Syngenta Agro, Av. Libertador 1855, CP 1638, Vicente Lopez, Buenos Aires, Argentina
| | - C Roca
- Dow Agroscience SA, Cecilia Grierson 355, CP 1107, Ciudad Autonoma de Buenos Aires, Argentina
| | - C Robredo
- Chacra Experimental Agricola Santa Rosa, Camino Vecinal Nº 8, Km 6, CP 4531, Colonia Santa Rosa, Salta, Argentina
| | - C Rubinstein
- Monsanto Argentina, Maipu 1210, CP 1006, Ciudad Autonoma de Buenos Aires, Argentina. .,ILSI Argentina, Ave Santa Fe 1145, 4th, C1059ABF, Ciudad Autonoma de Buenos Aires, Argentina.
| | - C Vicien
- University of Buenos Aires and CERA, Sr Consultant, Av. San Martín 4453, CP 1417, Ciudad Autonoma de Buenos Aires, Argentina
| | - A Whelan
- Biotechnology Directorate, Secretariat of Value Adding, Av. Paseo Colón 922, 2nd, Of. 247, CP 1063, Ciudad Autonoma de Buenos Aires, Argentina.,National University of Quilmes, Roque Sáenz Peña 352, CP 1876, Bernal, Buenos Aires, Argentina
| |
Collapse
|
20
|
Ahmad A, Negri I, Oliveira W, Brown C, Asiimwe P, Sammons B, Horak M, Jiang C, Carson D. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA. Transgenic Res 2016; 25:1-17. [PMID: 26433587 PMCID: PMC4735227 DOI: 10.1007/s11248-015-9907-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022]
Abstract
As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual-site comparisons (94.6 %) of NTA pest damage to the crop. In each case where a significant difference was observed in arthropod abundance or damage, the mean value for MON 87411 was within the reference range and/or the difference was not consistently observed across collection methods and/or sites. Thus, the differences were not representative of an adverse effect unfamiliar to maize and/or were not indicative of a consistent plant response associated with the GM traits. Results from this study support a conclusion of no adverse environmental impact of MON 87411 on NTAs compared to conventional maize and demonstrate the utility of relevant transportable data across regions for the ERA of GM crops.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA.
| | - Ignacio Negri
- Monsanto Company, Fontezuela Research Station Route 8, km214, CP2700, Pergamino, Buenos Aires, Argentina
| | - Wladecir Oliveira
- Monsanto Company, Dionisio Bortolotti Avenue, km 0.5, Caixa Postal 9, Santa Cruz das Palmeiras, São Paulo, Brazil
| | - Christopher Brown
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - Peter Asiimwe
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - Bernard Sammons
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - Michael Horak
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - Changjian Jiang
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| | - David Carson
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO, 63141, USA
| |
Collapse
|
21
|
Transportability of confined field trial data from cultivation to import countries for environmental risk assessment of genetically modified crops. Transgenic Res 2015; 24:929-44. [PMID: 26138875 PMCID: PMC4639567 DOI: 10.1007/s11248-015-9892-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/22/2015] [Indexed: 11/08/2022]
Abstract
Requirement of in-country confined field trials for genetically modified (GM) crops prior to unrestricted release is well-established among countries with domestic regulations for the cultivation approval of GM crops. However, the requirement of in-country confined field trials is not common in countries where the scope of the application does not include cultivation. Nonetheless, Japan and China request in-country confined field trials for GM crops which are intended only for use as food, feed and processing. This paper considers the transportability of confined field trial data from cultivation countries (e.g. United States, Canada, and South American countries) to import countries like Japan for the environmental risk assessment of GM crops by reviewing: (1) the purpose of confined field trial assessment, (2) weediness potential, defined as “an ability to establish and persist in an unmanaged area that is frequently disturbed by human activity”, of host crops, and (3) reliability of the confined field trial data obtained from cultivation countries. To review the reliability of the confined field data obtained in the US, this paper describes actual examples of three confined field trials of approved GM corn events conducted both in the US and Japan. Based on the above considerations, this paper concludes that confined field data of GM corn and cotton is transportable from cultivation countries to importing countries (e.g. from the US to Japan), regardless of the characteristics of the inserted gene(s). In addition, this paper advocates harmonization of protocols for confined field trials to facilitate more efficient data transportability across different geographies.
Collapse
|
22
|
Introduction to ISBGMO12: biosafety research past, present and future. Transgenic Res 2014; 23:911-4. [PMID: 24823764 PMCID: PMC4204009 DOI: 10.1007/s11248-014-9794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/23/2014] [Indexed: 11/21/2022]
|