1
|
Zupcic A, Latic N, Oubounyt M, Ramesova A, Carmeliet G, Baumbach J, Elkjaer ML, Erben RG. Ablation of Vitamin D Signaling in Cardiomyocytes Leads to Functional Impairment and Stimulation of Pro-Inflammatory and Pro-Fibrotic Gene Regulatory Networks in a Left Ventricular Hypertrophy Model in Mice. Int J Mol Sci 2024; 25:5929. [PMID: 38892126 PMCID: PMC11172934 DOI: 10.3390/ijms25115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The association between vitamin D deficiency and cardiovascular disease remains a controversial issue. This study aimed to further elucidate the role of vitamin D signaling in the development of left ventricular (LV) hypertrophy and dysfunction. To ablate the vitamin D receptor (VDR) specifically in cardiomyocytes, VDRfl/fl mice were crossed with Mlcv2-Cre mice. To induce LV hypertrophy experimentally by increasing cardiac afterload, transverse aortic constriction (TAC) was employed. Sham or TAC surgery was performed in 4-month-old, male, wild-type, VDRfl/fl, Mlcv2-Cre, and cardiomyocyte-specific VDR knockout (VDRCM-KO) mice. As expected, TAC induced profound LV hypertrophy and dysfunction, evidenced by echocardiography, aortic and cardiac catheterization, cardiac histology, and LV expression profiling 4 weeks post-surgery. Sham-operated mice showed no differences between genotypes. However, TAC VDRCM-KO mice, while having comparable cardiomyocyte size and LV fibrosis to TAC VDRfl/fl controls, exhibited reduced fractional shortening and ejection fraction as measured by echocardiography. Spatial transcriptomics of heart cryosections revealed more pronounced pro-inflammatory and pro-fibrotic gene regulatory networks in the stressed cardiac tissue niches of TAC VDRCM-KO compared to VDRfl/fl mice. Hence, our study supports the notion that vitamin D signaling in cardiomyocytes plays a protective role in the stressed heart.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mice
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/pathology
- Receptors, Calcitriol/metabolism
- Receptors, Calcitriol/genetics
- Vitamin D/metabolism
- Gene Regulatory Networks
- Fibrosis
- Signal Transduction
- Male
- Disease Models, Animal
- Mice, Knockout
- Inflammation/metabolism
- Inflammation/genetics
- Inflammation/pathology
Collapse
Affiliation(s)
- Ana Zupcic
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (A.Z.); (N.L.); (A.R.)
| | - Nejla Latic
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (A.Z.); (N.L.); (A.R.)
| | - Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany; (J.B.); (M.L.E.)
| | - Alice Ramesova
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (A.Z.); (N.L.); (A.R.)
| | - Geert Carmeliet
- Department of Chronic Diseases, Metabolism and Ageing, 3000 Leuven, Belgium;
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany; (J.B.); (M.L.E.)
| | - Maria L. Elkjaer
- Institute for Computational Systems Biology, University of Hamburg, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany; (J.B.); (M.L.E.)
| | - Reinhold G. Erben
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria; (A.Z.); (N.L.); (A.R.)
- Ludwig Boltzmann Institute of Osteology, Heinrich-Collin-Strasse 30, 1140 Vienna, Austria
| |
Collapse
|
2
|
Wu SR, Zoghbi HY. The Atoh1-Cre Knock-In Allele Ectopically Labels a Subpopulation of Amacrine Cells and Bipolar Cells in Mouse Retina. eNeuro 2023; 10:ENEURO.0307-23.2023. [PMID: 37923392 PMCID: PMC10626521 DOI: 10.1523/eneuro.0307-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
The retina has diverse neuronal cell types derived from a common pool of retinal progenitors. Many molecular drivers, mostly transcription factors, have been identified to promote different cell fates. In Drosophila, atonal is required for specifying photoreceptors. In mice, there are two closely related atonal homologs, Atoh1 and Atoh7 While Atoh7 is known to promote the genesis of retinal ganglion cells, there is no study on the function of Atoh1 in retinal development. Here, we crossed Atoh1Cre/+ mice to mice carrying a Cre-dependent TdTomato reporter to track potential Atoh1-lineage neurons in retinas. We characterized a heterogeneous group of TdTomato+ retinal neurons that were detected at the postnatal stage, including glutamatergic amacrine cells, AII amacrine cells, and BC3b bipolar cells. Unexpectedly, we did not observe TdTomato+ retinal neurons in the mice with an Atoh1-FlpO knock-in allele and a Flp-dependent TdTomato reporter, suggesting Atoh1 is not expressed in the mouse retina. Consistent with these data, conditional removal of Atoh1 in the retina did not cause any observable phenotypes. Importantly, we did not detect Atoh1 expression in the retina at multiple ages using mice with Atoh1-GFP knock-in allele. Therefore, we conclude that Atoh1Cre/+ mice have ectopic Cre expression in the retina and that Atoh1 is not required for retinal development.
Collapse
Affiliation(s)
- Sih-Rong Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Huda Y Zoghbi
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
3
|
Keller MP, Hudkins KL, Shalev A, Bhatnagar S, Kebede MA, Merrins MJ, Davis DB, Alpers CE, Kimple ME, Attie AD. What the BTBR/J mouse has taught us about diabetes and diabetic complications. iScience 2023; 26:107036. [PMID: 37360692 PMCID: PMC10285641 DOI: 10.1016/j.isci.2023.107036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Human and mouse genetics have delivered numerous diabetogenic loci, but it is mainly through the use of animal models that the pathophysiological basis for their contribution to diabetes has been investigated. More than 20 years ago, we serendipidously identified a mouse strain that could serve as a model of obesity-prone type 2 diabetes, the BTBR (Black and Tan Brachyury) mouse (BTBR T+ Itpr3tf/J, 2018) carrying the Lepob mutation. We went on to discover that the BTBR-Lepob mouse is an excellent model of diabetic nephropathy and is now widely used by nephrologists in academia and the pharmaceutical industry. In this review, we describe the motivation for developing this animal model, the many genes identified and the insights about diabetes and diabetes complications derived from >100 studies conducted in this remarkable animal model.
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelly L. Hudkins
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Anath Shalev
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Melkam A. Kebede
- School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Charles E. Alpers
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Michelle E. Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Wisinski JA, Reuter A, Peter DC, Schaid MD, Fenske RJ, Kimple ME. Prostaglandin EP3 receptor signaling is required to prevent insulin hypersecretion and metabolic dysfunction in a non-obese mouse model of insulin resistance. Am J Physiol Endocrinol Metab 2021; 321:E479-E489. [PMID: 34229444 PMCID: PMC8560379 DOI: 10.1152/ajpendo.00051.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When homozygous for the LeptinOb mutation (Ob), Black-and-Tan Brachyury (BTBR) mice become morbidly obese and severely insulin resistant, and by 10 wk of age, frankly diabetic. Previous work has shown prostaglandin EP3 receptor (EP3) expression and activity is upregulated in islets from BTBR-Ob mice as compared with lean controls, actively contributing to their β-cell dysfunction. In this work, we aimed to test the impact of β-cell-specific EP3 loss on the BTBR-Ob phenotype by crossing Ptger3 floxed mice with the rat insulin promoter (RIP)-CreHerr driver strain. Instead, germline recombination of the floxed allele in the founder mouse-an event whose prevalence we identified as directly associated with underlying insulin resistance of the background strain-generated a full-body knockout. Full-body EP3 loss provided no diabetes protection to BTBR-Ob mice but, unexpectedly, significantly worsened BTBR-lean insulin resistance and glucose tolerance. This in vivo phenotype was not associated with changes in β-cell fractional area or markers of β-cell replication ex vivo. Instead, EP3-null BTBR-lean islets had essentially uncontrolled insulin hypersecretion. The selective upregulation of constitutively active EP3 splice variants in islets from young, lean BTBR mice as compared with C57BL/6J, where no phenotype of EP3 loss has been observed, provides a potential explanation for the hypersecretion phenotype. In support of this, high islet EP3 expression in Balb/c females versus Balb/c males was fully consistent with their sexually dimorphic metabolic phenotype after loss of EP3-coupled Gαz protein. Taken together, our findings provide a new dimension to the understanding of EP3 as a critical brake on insulin secretion.NEW & NOTEWORTHY Islet prostaglandin EP3 receptor (EP3) signaling is well known as upregulated in the pathophysiological conditions of type 2 diabetes, contributing to β-cell dysfunction. Unexpected findings in mouse models of non-obese insulin sensitivity and resistance provide a new dimension to our understanding of EP3 as a key modulator of insulin secretion. A previously unknown relationship between mouse insulin resistance and the penetrance of rat insulin promoter-driven germline floxed allele recombination is critical to consider when creating β-cell-specific knockouts.
Collapse
Affiliation(s)
- Jaclyn A Wisinski
- Department of Biology, University of Wisconsin-LaCrosse, La Crosse, Wisconsin
| | - Austin Reuter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Darby C Peter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael D Schaid
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rachel J Fenske
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial VA Hospital, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
5
|
Li X, Chan LWC, Li X, Liu C, Yang G, Gao J, Dai M, Wang Y, Xie Z, Liu J, Zhou F, Zheng T, Feng D, Guo S, Li H, Sun K, Yang S. Obesity-Induced Regulator of Calcineurin 1 Overexpression Leads to β-Cell Failure Through Mitophagy Pathway Inhibition. Antioxid Redox Signal 2020; 32:413-428. [PMID: 31822118 DOI: 10.1089/ars.2019.7806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aims: Type 2 diabetes (T2D) is associated with pancreatic β-cell dysfunction, manifested by reduced glucose-stimulated insulin secretion (GSIS). The regulator of calcineurin 1 (RCAN1) in islets is an endogenous inhibitor of calcium-activated protein phosphatase. Previous studies have indicated that global RCAN1 overexpression under high nutrient stress is involved in insulin resistance in T2D. However, the specific role and mechanism of this gene's overexpression in pancreatic β-cells have not been thoroughly elucidated to date. Results: In this study, we showed that mice overexpressing islet-specific RCAN1 exhibited a prediabetic phenotype with markedly reduced GSIS under nutrient stress. Overexpression of RCAN1 increased the autophagy-associated DNA methylation level of Beclin-1 suppressing the induction of autophagy, affected the protein kinase B, and downregulated the activation of mammalian target of rapamycin, leading to Miro1-mediated mitophagy deficiency. Furthermore, the exacerbated impairment of autophagy induction and mitophagy flux failures induced β-cell apoptosis, resulting in GSIS impairment, lipid imbalance, and NOD-like receptor 3 proinflammation under high nutrient stress in mice. Innovation: Our present data identify a detrimental effect of RCAN1 overexpression on Miro1-mediated mitophagy deficiency and β-cell dysfunction in high-fat diet-fed RCAN1 overexpressing mice. Conclusion: Our results revealed that strategies targeting RCAN1 in vivo may provide a therapeutic target to enhance β-cell mitophagy quality and may determine the crucial factor in T2D development.
Collapse
Affiliation(s)
- Xujun Li
- ABSL-3 Laboratory at the Center for Animal Experiment, Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Xianyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Chunyan Liu
- ABSL-3 Laboratory at the Center for Animal Experiment, Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Guohua Yang
- Demonstration Center for Experimental Basic Medicine Education, School of Basic Medical Science, Wuhan University, Wuhan, People's Republic of China
| | - Jianfeng Gao
- ABSL-3 Laboratory at the Center for Animal Experiment, Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Ming Dai
- ABSL-3 Laboratory at the Center for Animal Experiment, Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Yunxin Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zhiwen Xie
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Junli Liu
- Shanghai Diabetes Research Institute, Shanghai JiaoTong University Affiliated 6th People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Tian Zheng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shaodong Guo
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Haojie Li
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sijun Yang
- ABSL-3 Laboratory at the Center for Animal Experiment, Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Detecting and Avoiding Problems When Using the Cre-lox System. Trends Genet 2018; 34:333-340. [PMID: 29336844 DOI: 10.1016/j.tig.2017.12.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022]
Abstract
The Cre-lox recombination approach is commonly used to generate cell-specific gene inactivation (or activation). We have noticed that the breeding and genotyping sections of papers utilizing Cre-lox techniques are frequently incomplete. While seemingly straightforward, there are important considerations that need to be implemented in the breeding and genotyping methods to prevent the introduction of experimental confounds. Germline recombination and transient expression of Cre recombinase during development are some examples of the complications that can occur, and conventional genotyping methods may fail to identify these events. In this opinion article, we highlight the importance of testing for unexpected recombination events, suggest strategies to isolate and minimize adverse recombination events, and encourage editors and reviewers to expect more definitive statements regarding the validation of genotyping.
Collapse
|
7
|
Imbalanced Insulin Actions in Obesity and Type 2 Diabetes: Key Mouse Models of Insulin Signaling Pathway. Cell Metab 2017; 25:797-810. [PMID: 28380373 DOI: 10.1016/j.cmet.2017.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/06/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
Abstract
Since the discovery of the tyrosine kinase activity of the insulin receptor (IR), researchers have been engaged in intensive efforts to resolve physiological functions of IR and its major downstream targets, insulin receptor substrate 1 (Irs1) and Irs2. Studies conducted using systemic and tissue-specific gene-knockout mice of IR, Irs1, and Irs2 have revealed the physiological roles of these molecules in each tissue and interactions among multiple tissues. In obesity and type 2 diabetes, selective downregulation of Irs2 and its downstream actions to cause reduced insulin actions was associated with increased insulin actions through Irs1 in variety tissues. Thus, we propose the novel concept of "organ- and pathway-specific imbalanced insulin action" in obesity and type 2 diabetes, which includes and extends "selective insulin resistance." This Review focuses on recent progress in understanding insulin signaling and insulin resistance using key mouse models for elucidating pathophysiology of human obesity and type 2 diabetes.
Collapse
|