1
|
Liu H, Zhang X, Shang Y, Zhao S, Li Y, Zhou X, Huo X, Qiao P, Wang X, Dai K, Li H, Guo J, Shi W. Genome-wide association study reveals genetic loci for ten trace elements in foxtail millet (Setaria italica). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:186. [PMID: 39017920 DOI: 10.1007/s00122-024-04690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
KEY MESSAGE One hundred and fifty-five QTL for trace element concentrations in foxtail millet were identified using a genome-wide association study, and a candidate gene associated with Ni-Co-Cr concentrations was detected. Foxtail millet (Setaria italica) is an important regional crop known for its rich mineral nutrient content, which has beneficial effects on human health. We assessed the concentrations of ten trace elements (Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn) in the grain of 408 foxtail millet accessions. Significant differences in the concentrations of five elements (Ba, Co, Ni, Sr, and Zn) were observed between two subpopulations of spring- and summer-sown foxtail millet varieties. Moreover, 84.4% of the element pairs exhibited significant correlations. To identify the genetic factors influencing trace element accumulation, a comprehensive genome-wide association study was conducted, identifying 155 quantitative trait locus (QTL) for the ten trace elements across three different environments. Among them, ten QTL were consistently detected in multiple environments, including qZn2.1, qZn4.4, qCr4.1, qFe6.3, qFe6.5, qCo6.1, qPb7.3, qPb7.5, qBa9.1, and qNi9.1. Thirteen QTL clusters were detected for multiple elements, which partially explained the correlations between elements. Additionally, the different concentrations of five elements between foxtail millet subpopulations were caused by the different frequencies of high-concentration alleles associated with important marker-trait associations. Haplotype analysis identified a candidate gene SETIT_036676mg associated with Ni accumulation, with the GG haplotype significantly increasing Ni-Co-Cr concentrations in foxtail millet. A cleaved amplified polymorphic sequence marker (cNi6676) based on the two haplotypes of SETIT_036676mg was developed and validated. Results of this study provide valuable reference information for the genetic research and improvement of trace element content in foxtail millet.
Collapse
Affiliation(s)
- Hanxiao Liu
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xin Zhang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yuping Shang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Shaoxing Zhao
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yingjia Li
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xutao Zhou
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xiaoyu Huo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Pengfei Qiao
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xin Wang
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Keli Dai
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Huixia Li
- Millet Research Institute, Shanxi Agricultural University, Changzhi, 046000, China
| | - Jie Guo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Weiping Shi
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, China.
| |
Collapse
|
2
|
Aminian-Dehkordi J, Rahimi S, Golzar-Ahmadi M, Singh A, Lopez J, Ledesma-Amaro R, Mijakovic I. Synthetic biology tools for environmental protection. Biotechnol Adv 2023; 68:108239. [PMID: 37619824 DOI: 10.1016/j.biotechadv.2023.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Synthetic biology transforms the way we perceive biological systems. Emerging technologies in this field affect many disciplines of science and engineering. Traditionally, synthetic biology approaches were commonly aimed at developing cost-effective microbial cell factories to produce chemicals from renewable sources. Based on this, the immediate beneficial impact of synthetic biology on the environment came from reducing our oil dependency. However, synthetic biology is starting to play a more direct role in environmental protection. Toxic chemicals released by industries and agriculture endanger the environment, disrupting ecosystem balance and biodiversity loss. This review highlights synthetic biology approaches that can help environmental protection by providing remediation systems capable of sensing and responding to specific pollutants. Remediation strategies based on genetically engineered microbes and plants are discussed. Further, an overview of computational approaches that facilitate the design and application of synthetic biology tools in environmental protection is presented.
Collapse
Affiliation(s)
| | - Shadi Rahimi
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Mehdi Golzar-Ahmadi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | - Amritpal Singh
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | - Javiera Lopez
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | | | - Ivan Mijakovic
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
3
|
Cui L, Chen Y, Liu J, Zhang Q, Xu L, Yang Z. Spraying Zinc Sulfate to Reveal the Mechanism through the Glutathione Metabolic Pathway Regulates the Cadmium Tolerance of Seashore Paspalum ( Paspalum vaginatum Swartz). PLANTS (BASEL, SWITZERLAND) 2023; 12:1982. [PMID: 37653899 PMCID: PMC10221796 DOI: 10.3390/plants12101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Cadmium (Cd) is considered to be one of the most toxic metals, causing serious harm to plants' growth and humans' health. Therefore, it is necessary to study simple, practical, and environmentally friendly methods to reduce its toxicity. Until now, people have applied zinc sulfate to improve the Cd tolerance of plants. However, related studies have mainly focused on physiological and biochemical aspects, with a lack of in-depth molecular mechanism research. In this study, we sprayed high (40 mM) and low (2.5 mM) concentrations of zinc sulfate on seashore paspalum (Paspalum vaginatum Swartz) plants under 0.5 mM Cd stress. Transcriptome sequencing and physiological indicators were used to reveal the mechanism of Cd tolerance. Compared with the control treatment, we found that zinc sulfate decreased the content of Cd2+ by 57.03-73.39%, and that the transfer coefficient of Cd decreased by 58.91-75.25% in different parts of plants. In addition, our results indicate that the antioxidant capacity of plants was improved, with marked increases in the glutathione content and the activity levels of glutathione reductase (GR), glutathione S-transferase (GST), and other enzymes. Transcriptome sequencing showed that the differentially expressed genes in both the 0.5 Zn and 40 Zn treatments were mainly genes encoding GST. This study suggests that genes encoding GST in the glutathione pathway may play an important role in regulating the Cd tolerance of seashore paspalum. Furthermore, the present study provides a theoretical reference for the regulation mechanism caused by zinc sulfate spraying to improve plants' Cd tolerance.
Collapse
Affiliation(s)
- Liwen Cui
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | - Zhimin Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Guo Z, Lv J, Zhang H, Hu C, Qin Y, Dong H, Zhang T, Dong X, Du N, Piao F. Red and blue light function antagonistically to regulate cadmium tolerance by modulating the photosynthesis,antioxidant defense system and Cd uptake in cucumber(Cucumis sativus L.). JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128412. [PMID: 35236029 DOI: 10.1016/j.jhazmat.2022.128412] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is highly toxic to both plants and humans.Light plays crucial roles in plant growth, development and stress responses, but how light functions in plant Cd response remain unclear.Here,we found that Cd treatment significantly induced the expression of PHYB but not PHYA and CRY1 in leaves and roots of cucumber. Correspondingly,compared with white light (W) during Cd stress,red light(R) increased Cd sensitivity,whereas blue light (B) enhanced Cd tolerance as evidenced by decreased Cd-induced chlorosis, growth inhibition, photosynthesis inhibition and chloroplast ultrastructure damage.Furthermore,B markedly increased the transcripts and activities of the antioxidant enzymes including ascorbate peroxidase (APX),catalase (CAT),superoxide dismutase (SOD) and glutathione reductase (GR),as well as glutathione (GSH) content and GSH1 expression, resulting in hydrogen peroxide (H2O2) and superoxide (O2.-) reduction,but R treatment showed the opposite trend. Moreover, R and B markedly up-regulated and down-regulated the expression levels of Cd uptake and transport genes including IRT1, NRAMP1 and HMA3, leading to more and less Cd accumulation than the W-treated plants in both shoots and roots, respectively under Cd stress. Collectively, our data clearly demonstrate that R and B function antagonistically to regulate Cd tolerance in cucumber via modulating the photosynthesis, antioxidant defense system and Cd uptake, providing a novel light quality control strategy to enhance crop Cd tolerance and food safety.
Collapse
Affiliation(s)
- Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Jingli Lv
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Huimei Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Chunyan Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Yanping Qin
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Han Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, P.R. China.
| |
Collapse
|
5
|
Yang Z, Yang F, Liu JL, Wu HT, Yang H, Shi Y, Liu J, Zhang YF, Luo YR, Chen KM. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151099. [PMID: 34688763 DOI: 10.1016/j.scitotenv.2021.151099] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
Heavy metal pollution in soil is a global problem with serious impacts on human health and ecological security. Phytoextraction in phytoremediation, in which plants uptake and transport heavy metals (HMs) to the tissues of aerial parts, is the most environmentally friendly method to reduce the total amount of HMs in soil and has wide application prospects. However, the molecular mechanism of phytoextraction is still under investigation. The uptake, translocation, and retention of HMs in plants are mainly mediated by a variety of transporter proteins. A better understanding of the accumulation strategy of HMs via transporters in plants is a prerequisite for the improvement of phytoextraction. In this review, the biochemical structure and functions of HM transporter families in plants are systematically summarized, with emphasis on their roles in phytoremediation. The accumulation mechanism and regulatory pathways related to hormones, regulators, and reactive oxygen species (ROS) of HMs concerning these transporters are described in detail. Scientific efforts and practices for phytoremediation carried out in recent years suggest that creation of hyperaccumulators by transgenic or gene editing techniques targeted to these transporters and their regulators is the ultimate powerful path for the phytoremediation of HM contaminated soils.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Lan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Tao Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Shi
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Jie Liu
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Yan-Feng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Yan-Rong Luo
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Wang Q, Lu X, Chen X, Zhao L, Han M, Wang S, Zhang Y, Fan Y, Ye W. Genome-wide identification and function analysis of HMAD gene family in cotton (Gossypium spp.). BMC PLANT BIOLOGY 2021; 21:386. [PMID: 34416873 PMCID: PMC8377987 DOI: 10.1186/s12870-021-03170-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The abiotic stress such as soil salinization and heavy metal toxicity has posed a major threat to sustainable crop production worldwide. Previous studies revealed that halophytes were supposed to tolerate other stress including heavy metal toxicity. Though HMAD (heavy-metal-associated domain) was reported to play various important functions in Arabidopsis, little is known in Gossypium. RESULTS A total of 169 G. hirsutum genes were identified belonging to the HMAD gene family with the number of amino acids ranged from 56 to 1011. Additionally, 84, 76 and 159 HMAD genes were identified in each G. arboreum, G. raimondii and G. barbadense, respectively. The phylogenetic tree analysis showed that the HMAD gene family were divided into five classes, and 87 orthologs of HMAD genes were identified in four Gossypium species, such as genes Gh_D08G1950 and Gh_A08G2387 of G. hirsutum are orthologs of the Gorai.004G210800.1 and Cotton_A_25987 gene in G. raimondii and G. arboreum, respectively. In addition, 15 genes were lost during evolution. Furthermore, conserved sequence analysis found the conserved catalytic center containing an anion binding (CXXC) box. The HMAD gene family showed a differential expression levels among different tissues and developmental stages in G. hirsutum with the different cis-elements for abiotic stress. CONCLUSIONS Current study provided important information about HMAD family genes under salt-stress in Gossypium genome, which would be useful to understand its putative functions in different species of cotton.
Collapse
Affiliation(s)
- Qinqin Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000 China
| |
Collapse
|
7
|
Capability of the Invasive Tree Prosopis glandulosa Torr. to Remediate Soil Treated with Sewage Sludge. SUSTAINABILITY 2019. [DOI: 10.3390/su11092711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sewage sludge improves agricultural soil and plant growth, but there are hazards associated with its use, including high metal(loid) contents. An experimental study was conducted under greenhouse conditions to examine the effects of sewage sludge on growth of the invasive tree Prosopis glandulosa, as well as to determine its phytoremediation capacity. Plants were established and grown for seven months along a gradient of sewage sludge content. Plant traits, soil properties, and plant and soil concentrations of N, P, K, Cd, Pb, Cu, Ni, Zn, Cr, Co, As, and Fe were recorded. The addition of sewage sludge led to a significant decrease in soil pH, and Ni, Co, and As concentrations, as well as an increase in soil organic matter and the concentrations of N, P, Cu, Zn, and Cr. Increasing sewage sludge content in the growth medium raised the total uptake of most metals by P. glandulosa plants due to higher biomass accumulation (taller plants with more leaves) and higher metal concentrations in the plant tissues. P. glandulosa concentrated more Cd, Pb, Cu, Zn, and Fe in its below-ground biomass (BGB) than in its above-ground biomass (AGB). P. glandulosa concentrated Ni, Co, and As in both BGB and AGB. P. glandulosa has potential as a biotool for the phytoremediation of sewage sludges and sewage-amended soils in arid and semi-arid environments, with a potential accumulation capability for As in plant leaves.
Collapse
|