1
|
Qiao H, Jiang Q, Zhao J, Xiao L, Zhu-Salzman K, Xu D, Xu G, Shen J, Gu A, Hao D, Yan S, Tan Y. Nano-delivery platform with strong protection and efficient delivery: preparation of self-assembled RNA pesticide with dual RNAi targets against Apolygus lucorum. J Nanobiotechnology 2025; 23:93. [PMID: 39920702 PMCID: PMC11806883 DOI: 10.1186/s12951-025-03155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND RNA pesticide is regarded as the "third revolution in the history of pesticides". However, the double-stranded RNA (dsRNA) is easily degraded in the environment, and its delivery efficiency is not sufficient for pest management. This study aimed to construct a star polycation (SPc)-based delivery platform with strong protection and efficient delivery to develop a self-assembled RNA pesticide with dual RNA interference (RNAi) targets. RESULTS The nanocarrier SPc was applied to assemble with dsRNA via electrostatic interaction, hydrogen bond and Van der Waals force, and the self-complexation with SPc formed nanoscale dsRNA/SPc complex. The SPc could protect the dsRNA from the degradation by midgut fluid or RNase A, thus significantly increasing the stability of dsRNA under various environmental conditions. Meanwhile, the SPc was able to improve the translocation of dsRNA across insect cuticle, and increase its plant uptake. Then, dsECR-A and dsTre-1 fragments were individually screened, and the dsECR-A and dsTre-1 fragments with good control effects were co-expressed in pET28-BL21 (DE3) RNase III - system to prepare the dsECR-A + Tre-1/SPc complex. Both topical application and spraying of dsECR-A + Tre-1/SPc complex could effectively control a piercing-sucking agricultural pest Apolygus lucorum. The SPc-loaded dsECR-A + Tre-1 could up-regulate endocytosis-related genes and down-regulate cuticle biosynthesis-related genes, which primarily inhibited insect growth and development. CONCLUSIONS Our study comprehensively demonstrated the advantages of SPc-based dsRNA delivery platform, and developed a self-assembled RNA pesticide with dual RNAi targets, which provided a reference for the design of novel RNA pesticides.
Collapse
Affiliation(s)
- Heng Qiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Qinhong Jiang
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Liubin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Dejin Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Guangchun Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Aiguo Gu
- Jiangsu Product Quality Testing & Inspection Institute, Nanjing, 210007, People's Republic of China
| | - Dejun Hao
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
2
|
Julian-Chávez B, Siqueiros-Cendón TS, Torres-Castillo JA, Sinagawa-García SR, Abraham-Juárez MJ, González-Barriga CD, Rascón-Cruz Q, Siañez-Estrada LI, Arévalo-Gallegos S, Espinoza-Sánchez EA. Silencing ACE1 Gene with dsRNA of Different Lengths Impairs Larval Development in Leptinotarsa decemlineata. INSECTS 2024; 15:1000. [PMID: 39769602 PMCID: PMC11678036 DOI: 10.3390/insects15121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
In the search for effective strategies to control the Colorado Potato Beetle, RNA interference technology has emerged as a promising method due to its capacity to suppress genes selectively. Factors such as the target gene and double-stranded RNA (dsRNA) length are critical for optimizing gene silencing efficiency. In this study, we designed and synthesized in vitro dsRNAs of varying lengths targeting the ACE1 gene, which encodes the AChE1 isoform of acetylcholinesterase in the beetle. All tested dsRNA lengths (222 bp, 543 bp, 670 bp, and 870 bp) promoted transcript reduction. The 670 bp dsRNA was the most effective, reducing transcript levels by approximately 40% by day seven, followed by the 543 bp dsRNA. No significant differences were observed between the 222 bp and 870 bp dsRNAs. Furthermore, all of the dsRNA lengths resulted in reduced weight gain and increased mortality in larvae, with the 670 bp dsRNA showing the highest mortality rate, leaving only 63% larval survival, a trend that persisted through day nine. These findings emphasize that dsRNA length is a key factor in the silencing response, underscoring the importance of selecting the optimal length while considering the gene's target, stability, and delivery methods. This study contributes to establishing design criteria for dsRNA, aiding in the development of more effective and sustainable pest management strategies.
Collapse
Affiliation(s)
- Brenda Julian-Chávez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Tania S. Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Jorge Ariel Torres-Castillo
- Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Ave. División del Golfo 356, Col. Libertad, Ciudad Victoria 87019, Tamaulipas, Mexico;
| | - Sugey Ramona Sinagawa-García
- Laboratorio de Biotecnología, Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa S/N Col. Ex hacienda El Canadá, General Escobedo 66050, Nuevo León, Mexico;
| | - María Jazmín Abraham-Juárez
- Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norte León Km 9.6, Irapuato 36821, Guanajuato, Mexico;
| | - Carmen Daniela González-Barriga
- Laboratorio de Cultivo de Tejidos, División de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Heroico Colegio Militar 4700, Nombre de Dios, Chihuahua 31100, Chihuahua, Mexico;
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Luis Ignacio Siañez-Estrada
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Edward Alexander Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| |
Collapse
|
3
|
Zhang Y, Ke Z, Xu L, Yang Y, Chang L, Zhang J. A faster killing effect of plastid-mediated RNA interference on a leaf beetle through induced dysbiosis of the gut bacteria. PLANT COMMUNICATIONS 2024; 5:100974. [PMID: 38751119 DOI: 10.1016/j.xplc.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
The expression of double-stranded RNAs (dsRNAs) from the plastid genome has been proven to be an effective method for controlling herbivorous pests by targeting essential insect genes. However, there are limitations to the efficiency of plastid-mediated RNA interference (PM-RNAi) due to the initial damage caused by the insects and their slow response to RNA interference. In this study, we developed transplastomic poplar plants that express dsRNAs targeting the β-Actin (dsACT) and Srp54k (dsSRP54K) genes of Plagiodera versicolora. Feeding experiments showed that transplastomic poplar plants can cause significantly higher mortality in P. versicolora larvae compared with nuclear transgenic or wild-type poplar plants. The efficient killing effect of PM-RNAi on P. versicolora larvae was found to be dependent on the presence of gut bacteria. Importantly, foliar application of a gut bacterial strain, Pseudomonas putida, will induce dysbiosis in the gut bacteria of P. versicolora larvae, leading to a significant acceleration in the speed of killing by PM-RNAi. Overall, our findings suggest that interfering with gut bacteria could be a promising strategy to enhance the effectiveness of PM-RNAi for insect pest control, offering a novel and effective approach for crop protection based on RNAi technology.
Collapse
Affiliation(s)
- Yiqiu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zebin Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
4
|
Saakre M, Jaiswal S, Rathinam M, Raman KV, Tilgam J, Paul K, Sreevathsa R, Pattanayak D. Host-Delivered RNA Interference for Durable Pest Resistance in Plants: Advanced Methods, Challenges, and Applications. Mol Biotechnol 2024; 66:1786-1805. [PMID: 37523020 DOI: 10.1007/s12033-023-00833-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Insect-pests infestation greatly affects global agricultural production and is projected to become more severe in upcoming years. There is concern about pesticide application being ineffective due to insect resistance and environmental toxicity. Reduced effectiveness of Bt toxins also made the scientific community shift toward alternative strategies to control devastating agricultural pests. With the advent of host-delivered RNA interference, also known as host-induced gene silencing, targeted insect genes have been suppressed through genetic engineering tools to deliver a novel insect-pest resistance strategy for combating a number of agricultural pests. This review recapitulates the possible mechanism of host-delivered RNA interference (HD-RNAi), in particular, the silencing of target genes of insect-pests. We emphasize the development of the latest strategies against evolving insect targets including designing of artificial microRNAs, vector constructs, and the benefit of using plastid transformation to transform target RNA-interfering genes. Advantages of using HD-RNAi over other small RNA delivery modes and also the supremacy of HD-RNAi over the CRISPR-Cas system particularly for insect resistance have been described. However, the broader application of this technology is restricted due to its several limitations. Using artificial miRNA designs, the host-delivered RNAi + Bt combinatorial approach and chloroplast transformation can overcome limitations of RNAi. With careful design and delivery approaches, RNAi promises to be extremely valuable and effective plant protection strategy to attain durable insect-pest resistance in crops.
Collapse
Affiliation(s)
- Manjesh Saakre
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Sandeep Jaiswal
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
- ICAR-Research Complex for NEH Region, Umiam, Meghalaya- 793103, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - K Venkat Raman
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Jyotsana Tilgam
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Krishnayan Paul
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Debasis Pattanayak
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
5
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
6
|
Hossain MJ, Bakhsh A, Joyia FA, Aksoy E, Gökçe NZÖ, Khan MS. Engineering of insecticidal hybrid gene into potato chloroplast genome exhibits promising control of Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Transgenic Res 2023; 32:497-512. [PMID: 37707659 DOI: 10.1007/s11248-023-00366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
The potato chloroplast was transformed with codon optimized synthetic hybrid cry gene (SN19) to mitigate crop losses by Colorado potato beetle (CPB). The bombarded explants (leaves and internode) were cultured on MS medium supplemented with BAP (2.0 mg/l), NAA (0.2 mg/l), TDZ (2.0 mg/l) and GA3 (0.1 mg/l); spectinomycin 50 mg/l was used as a selection agent in the medium. Leaf explants of cultivar Kuroda induced highest percentage (92%) of callus where cultivar Santae produced the highest percentage (85.7%) of transplastomic shoots. Sante and Challenger showed 9.6% shoot regeneration efficiency followed by cultivar Simply Red (8.8%). PCR amplification yielded 16 postive transplastomic plantlets out of 21 spectinomycin resistant ones. Target gene integration was confirmed by PCR and Southern blot, whereas RT-qPCR was used to assess the expression level of transgene. The localization of visual marker gene gfp was tracked by laser scanning confocal microscopy which confirmed its expression in chloroplasts of leaf cells. The transplastomic plants ensured high mortality to both larvae and adult CPB. Foliage consumption and weight gain of CPB fed on transplastomic leaves were lower compared to the control plants. Sucessful implementation of current research findings can lead to a viable solution to CPB mediated potato losses globally.
Collapse
Affiliation(s)
- Md Jakir Hossain
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka, 1207, Bangladesh
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey.
- Center of Excellence in Molecular Biology (CEMB), University of Punjab, Lahore, Pakistan.
| | - Faiz Ahmad Joyia
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Emre Aksoy
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Neslihan Zahide Özturk Gökçe
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey
| | - Muhammad Sarwar Khan
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
7
|
Zhang C, Wan B, Jin MR, Wang X, Wei YJ, Zhong L, Xia B. Inhibition of ecdysone receptor (DcEcR) and ultraspiracle (DcUSP) expression in Diaphorina citri increased susceptibility to pesticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105518. [PMID: 37532332 DOI: 10.1016/j.pestbp.2023.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Diaphorina citri Kuwayama is of great concern because of its ability to transmit devastating citrus greening illness (Huanglongbing). One strategy for controlling HLB may involve limiting the spread of D. citri. Insecticides using dsRNA target genes may be a useful option to control D. citri. The ecdysone receptor (EcR) and ultraspiracle (USP) are crucial for the growth and reproduction of insects. This study identified the genes for D. citri ecdysone receptor (DcEcR) and ultraspiracle (DcUSP). According to the qPCR data, DcUSP peaked at the 5th-instar nymph stage, while DcEcR peaked at the adult stage. Females expressed DcEcR and DcUSP at much higher levels than males. RNAi was used to examine DcEcR and DcUSP function. The findings demonstrated that inhibition of DcEcR and DcUSP delayed nymph development and decreased survival and eclosion rates. dsEcR caused adults to develop deformed wings, and dsUSP caused nymphs to wither and die. Female adult ovaries developed slowly, and the females laid fewer eggs. Additionally, DcEcR and DcUSP were inhibited, increasing D. citri susceptibility to pesticides. These findings suggest that DcEcR and DcUSP are critical for D. citri development, growth, and reproduction and may serve as potential targets for D. citri management.
Collapse
Affiliation(s)
- Cong Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bin Wan
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Meng-Ru Jin
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xi Wang
- Development & Service Center for Agriculture and Rural Industry of Jiangxi Province, China
| | - Yu-Jing Wei
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ling Zhong
- Development & Service Center for Agriculture and Rural Industry of Jiangxi Province, China
| | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
8
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|
9
|
Chincinska IA, Miklaszewska M, Sołtys-Kalina D. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing. PLANTA 2022; 257:25. [PMID: 36562862 PMCID: PMC9789015 DOI: 10.1007/s00425-022-04054-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
MAIN CONCLUSION Genome editing using CRISPR/Cas technology improves the quality of potato as a food crop and enables its use as both a model plant in fundamental research and as a potential biofactory for producing valuable compounds for industrial applications. Potato (Solanum tuberosum L.) plays a significant role in ensuring global food and nutritional security. Tuber yield is negatively affected by biotic and abiotic stresses, and enzymatic browning and cold-induced sweetening significantly contribute to post-harvest quality losses. With the dual challenges of a growing population and a changing climate, potato enhancement is essential for its sustainable production. However, due to several characteristics of potato, including high levels of heterozygosity, tetrasomic inheritance, inbreeding depression, and self-incompatibility of diploid potato, conventional breeding practices are insufficient to achieve substantial trait improvement in tetraploid potato cultivars within a relatively short time. CRISPR/Cas-mediated genome editing has opened new possibilities to develop novel potato varieties with high commercialization potential. In this review, we summarize recent developments in optimizing CRISPR/Cas-based methods for potato genome editing, focusing on approaches addressing the challenging biology of this species. We also discuss the feasibility of obtaining transgene-free genome-edited potato varieties and explore different strategies to improve potato stress resistance, nutritional value, starch composition, and storage and processing characteristics. Altogether, this review provides insight into recent advances, possible bottlenecks, and future research directions in potato genome editing using CRISPR/Cas technology.
Collapse
Affiliation(s)
- Izabela Anna Chincinska
- Department of Plant Physiology and Biotechnology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Magdalena Miklaszewska
- Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology (MOSYS), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Dorota Sołtys-Kalina
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
10
|
Ribeiro TP, Vasquez DDN, Macedo LLP, Lourenço-Tessutti IT, Valença DC, Oliveira-Neto OB, Paes-de-Melo B, Rodrigues-Silva PL, Firmino AAP, Basso MF, Lins CBJ, Neves MR, Moura SM, Tripode BMD, Miranda JE, Silva MCM, Grossi-de-Sa MF. Stabilized Double-Stranded RNA Strategy Improves Cotton Resistance to CBW ( Anthonomus grandis). Int J Mol Sci 2022; 23:13713. [PMID: 36430188 PMCID: PMC9691246 DOI: 10.3390/ijms232213713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
Cotton is the most important crop for fiber production worldwide. However, the cotton boll weevil (CBW) is an insect pest that causes significant economic losses in infested areas. Current control methods are costly, inefficient, and environmentally hazardous. Herein, we generated transgenic cotton lines expressing double-stranded RNA (dsRNA) molecules to trigger RNA interference-mediated gene silencing in CBW. Thus, we targeted three essential genes coding for chitin synthase 2, vitellogenin, and ecdysis-triggering hormone receptor. The stability of expressed dsRNAs was improved by designing a structured RNA based on a viroid genome architecture. We transformed cotton embryos by inserting a promoter-driven expression cassette that overexpressed the dsRNA into flower buds. The transgenic cotton plants were characterized, and positive PCR transformed events were detected with an average heritability of 80%. Expression of dsRNAs was confirmed in floral buds by RT-qPCR, and the T1 cotton plant generation was challenged with fertilized CBW females. After 30 days, data showed high mortality (around 70%) in oviposited yolks. In adult insects fed on transgenic lines, chitin synthase II and vitellogenin showed reduced expression in larvae and adults, respectively. Developmental delays and abnormalities were also observed in these individuals. Our data remark on the potential of transgenic cotton based on a viroid-structured dsRNA to control CBW.
Collapse
Affiliation(s)
- Thuanne P. Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Biotechnology and Molecular Biology Department, Federal University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil
| | - Daniel D. N. Vasquez
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Leonardo L. P. Macedo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Isabela T. Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - David C. Valença
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Osmundo B. Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
- Biochemistry and Molecular Biology Department, Integrated Faculties of the Educational Union of Planalto Central, Brasilia 70675-760, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | - Alexandre A. P. Firmino
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Max Planck Institute Molecular Plant Physiol, 14476 Potsdam, Germany
| | - Marcos F. Basso
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Camila B. J. Lins
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Maysa R. Neves
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Stefanie M. Moura
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | | | - Maria C. M. Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| |
Collapse
|
11
|
Li X, Liu X, Lu W, Yin X, An S. Application progress of plant-mediated RNAi in pest control. Front Bioeng Biotechnol 2022; 10:963026. [PMID: 36003536 PMCID: PMC9393288 DOI: 10.3389/fbioe.2022.963026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi)-based biopesticides are novel biologic products, developed using RNAi principles. They are engineered to target genes of agricultural diseases, insects, and weeds, interfering with their target gene expression so as to hinder their growth and alleviate their damaging effects on crops. RNAi-based biopesticides are broadly classified into resistant plant-based plant-incorporated protectants (PIPs) and non-plant-incorporated protectants. PIP RNAi-based biopesticides are novel biopesticides that combine the advantages of RNAi and resistant transgenic crops. Such RNAi-based biopesticides are developed through nuclear or plastid transformation to breed resistant plants, i.e., dsRNA-expressing transgenic plants. The dsRNA of target genes is expressed in the plant cell, with pest and disease control being achieved through plant-target organism interactions. Here, we review the action mechanism and strategies of RNAi for pest management, the development of RNAi-based transgenic plant, and the current status and advantages of deploying these products for pest control, as well as the future research directions and problems in production and commercialization. Overall, this study aims to elucidate the current development status of RNAi-based biopesticides and provide guidelines for future research.
Collapse
|
12
|
Kumari P, Jasrotia P, Kumar D, Kashyap PL, Kumar S, Mishra CN, Kumar S, Singh GP. Biotechnological Approaches for Host Plant Resistance to Insect Pests. Front Genet 2022; 13:914029. [PMID: 35719377 PMCID: PMC9201757 DOI: 10.3389/fgene.2022.914029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Annually, the cost of insect pest control in agriculture crosses billions of dollars around the world. Until recently, broad-spectrum synthetic pesticides were considered as the most effective means of pest control in agriculture. However, over the years, the overreliance on pesticides has caused adverse effects on beneficial insects, human health and the environment, and has led to the development of pesticide resistant insects. There is a critical need for the development of alternative pest management strategies aiming for minimum use of pesticides and conservation of natural enemies for maintaining the ecological balance of the environment. Host plant resistance plays a vital role in integrated pest management but the development of insect-resistant varieties through conventional ways of host plant resistance takes time, and is challenging as it involves many quantitative traits positioned at various loci. Biotechnological approaches such as gene editing, gene transformation, marker-assisted selection etc. in this direction have recently opened up a new era of insect control options. These could contribute towards about exploring a much wider array of novel insecticidal genes that would otherwise be beyond the scope of conventional breeding. Biotechnological interventions can alter the gene expression level and pattern as well as the development of transgenic varieties with insecticidal genes and can improve pest management by providing access to novel molecules. This review will discuss the emerging biotechnological tools available to develop insect-resistant engineered crop genotypes with a better ability to resist the attack of insect pests.
Collapse
Affiliation(s)
- Pritam Kumari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
- CCS Haryana Agricultural University, Hisar, India
| | - Poonam Jasrotia
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Deepak Kumar
- CCS Haryana Agricultural University, Hisar, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Satish Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | |
Collapse
|
13
|
Kaur R, Choudhury A, Chauhan S, Ghosh A, Tiwari R, Rajam MV. RNA interference and crop protection against biotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2357-2377. [PMID: 34744371 PMCID: PMC8526635 DOI: 10.1007/s12298-021-01064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 05/26/2023]
Abstract
RNA interference (RNAi) is a universal phenomenon of RNA silencing or gene silencing with broader implications in important physiological and developmental processes of most eukaryotes, including plants. Small RNA (sRNA) are the critical drivers of the RNAi machinery that ensures down-regulation of the target genes in a homology-dependent manner and includes small-interfering RNAs (siRNAs) and micro RNAs (miRNAs). Plant researchers across the globe have exploited the powerful technique of RNAi to execute targeted suppression of desired genes in important crop plants, with an intent to improve crop protection against pathogens and pests for sustainable crop production. Biotic stresses cause severe losses to the agricultural productivity leading to food insecurity for future generations. RNAi has majorly contributed towards the development of designer crops that are resilient towards the various biotic stresses such as viruses, bacteria, fungi, insect pests, and nematodes. This review summarizes the recent progress made in the RNAi-mediated strategies against these biotic stresses, along with new insights on the future directions in research involving RNAi for crop protection.
Collapse
Affiliation(s)
- Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Aparajita Choudhury
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Sambhavana Chauhan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Arundhati Ghosh
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ruby Tiwari
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
14
|
Wu JJ, Mu LL, Kang WN, Ze LJ, Shen CH, Jin L, Anjum AA, Li GQ. RNA interference targeting ecdysone receptor blocks the larval-pupal transition in Henosepilachna vigintioctopunctata. INSECT SCIENCE 2021; 28:419-429. [PMID: 32162469 DOI: 10.1111/1744-7917.12777] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/19/2020] [Accepted: 03/08/2020] [Indexed: 05/10/2023]
Abstract
Henosepilachna vigintioctopunctata is a serious insect pest which attacks a large number of nightshades and cucurbits in Asian countries, Brazil and Australia. Prolonged application of traditional pesticides has caused environmental pollution and exerted deleterious effects on human health. Finding new approaches with high target specificity and low environmental contamination has become an urgent task. RNA interference (RNAi) induced by double-stranded RNA (dsRNA) is expected to be applicable to managing this pest. Here we evaluated the effects of Escherichia coli-expressed dsRNAs targeting ecdysone receptor (EcR) gene via dietary delivery in laboratory and foliar spraying in a greenhouse. The target transcript was successfully knocked down when the 4th-instar larvae had fed on potato foliage dipped with dsEcR in a laboratory bioassay. Around 85% of the HvEcR RNAi larvae remained as prepupae or became abnormal pupae, and failed to emerge into adults. Ingestion of dsEcR-immersed foliage by the 3rd-instar larvae effectuated a comparable RNAi response and brought about more severe defects: all the resultant larvae arrested development, remained as prepupae and finally died. For assay in the greenhouse, a dsEcR-contained E. coli suspension was directly sprayed to the foliage of greenhouse-growing potato plants and the 3rd- and 4th-instar larvae were transferred to the leaves. High RNAi efficacy was obtained and identical RNAi phenotypes were observed in treated larvae. In addition, spraying dsEcR reduced leaf damage. Our results indicate a possibility of practical application of dsEcR as an environmentally friendly RNA pesticide to control H. vigintioctopunctata larvae.
Collapse
Affiliation(s)
- Jian-Jian Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Li-Li Mu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wei-Nan Kang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Long-Ji Ze
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chen-Hui Shen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ahmad Ali Anjum
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Chung SH, Feng H, Jander G. Engineering pest tolerance through plant-mediated RNA interference. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102029. [PMID: 33639339 DOI: 10.1016/j.pbi.2021.102029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 05/18/2023]
Abstract
Expression of insect-targeted RNA interference (RNAi) constructs in transgenic plants is a promising approach for agricultural pest control. Compared to conventional chemical insecticides, RNAi target specificity is high and the potential for negative environmental effects is low. However, although numerous laboratory studies show insect growth inhibition by double stranded RNA or artificial microRNA, few of these constructs have been moved into commercial application as genetically engineered plants. Variation in RNA degradation, uptake, processing, and systemic transport in insects can influence interspecific and intraspecific differences in RNAi efficacy and the development of resistance to RNAi in agricultural settings. Further research is needed, both to identify optimal gene targets for efficient RNAi in pest species and to reduce the potential for off-target effects in beneficial species.
Collapse
Affiliation(s)
- Seung Ho Chung
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Honglin Feng
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Rahamkulov I, Bakhsh A. Tissue-specific and stress-inducible promoters establish their suitability for containment of foreign gene(s) expression in transgenic potatoes. 3 Biotech 2020; 10:426. [PMID: 32968611 PMCID: PMC7486355 DOI: 10.1007/s13205-020-02350-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The present study was conducted to determine efficiency of green tissue-specific (pRCA) and stress-inducible promoters (pRD29A) to express E. coli beta-glucuronidase (gusA) gene in transgenic potatoes compared with constitutive promoter (35S CaMV). The promoter fragments were isolated from their original source and cloned upstream to gusA in pCAMBIA-1301 binary vector to develop plant expression constructs, i.e., pRCA-pCAMBIA and pRD29A-pCAMBIA. Agrobacterium strain GV2260 harboring recombinant plasmids were used to infect leaf discs and internodal explant of Lady Olympia cultivar. GUS histochemical analysis was performed at different stages to determine GUS activity in transgenic plants. To determine activity of stress-inducible promoter (pRD29A), transgenic plants were exposed to heat, drought and combination of both heat and drought stress. The real time (RT-qPCR) and GUS florimetric assays revealed that pRD29A promoter gets more activated under drought, heat and combination of both stresses. GUS expression levels were more than 10 folds high with pRD29A promoter compared to control. Likewise, the reduced transcripts levels of gusA gene under control of pRCA promoter were found in tuber/roots of transgenic plants compared to 35S promoter. GUS florimetric assays also showed decreased or no GUS expression in tubers. In conclusion, the results encourage the appropriate use of promoters to drive the expression of foreign gene(s) for the development of potato lines tolerant to biotic and abiotic stress while minimizing the risks of transgenic technology in potatoes.
Collapse
Affiliation(s)
- Ilhom Rahamkulov
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| |
Collapse
|
17
|
|
18
|
Kadoić Balaško M, Mikac KM, Bažok R, Lemic D. Modern Techniques in Colorado Potato Beetle ( Leptinotarsa decemlineata Say) Control and Resistance Management: History Review and Future Perspectives. INSECTS 2020; 11:insects11090581. [PMID: 32882790 PMCID: PMC7563253 DOI: 10.3390/insects11090581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 01/04/2023]
Abstract
Simple Summary The Colorado potato beetle (CPB) is one of the most important potato pest worldwide. It is native to U.S. but during the 20th century it has dispersed through Europe, Asia and western China. It continues to expand in an east and southeast direction. Damages are caused by larvae and adults. Their feeding on potato plant leaves can cause complete defoliation and lead to a large yield loss. After the long period of using only chemical control measures, the emergence of resistance increased and some new and different methods come to the fore. The main focus of this review is on new approaches to the old CPB control problem. We describe the use of Bacillus thuringiensis and RNA interference (RNAi) as possible solutions for the future in CPB management. RNAi has proven successful in controlling many pests and shows great potential for CPB control. Better understanding of the mechanisms that affect efficiency will enable the development of this technology and boost potential of RNAi to become part of integrated plant protection in the future. We described also the possibility of using single nucleotide polymorphisms (SNPs) as a way to go deeper into our understanding of resistance and how it influences genotypes. Abstract Colorado potato beetle, CPB (Leptinotarsa decemlineata Say), is one of the most important pests of the potato globally. Larvae and adults can cause complete defoliation of potato plant leaves and can lead to a large yield loss. The insect has been successfully suppressed by insecticides; however, over time, has developed resistance to insecticides from various chemical groups, and its once successful control has diminished. The number of available active chemical control substances is decreasing with the process of testing, and registering new products on the market are time-consuming and expensive, with the possibility of resistance ever present. All of these concerns have led to the search for new methods to control CPB and efficient tools to assist with the detection of resistant variants and monitoring of resistant populations. Current strategies that may aid in slowing resistance include gene silencing by RNA interference (RNAi). RNAi, besides providing an efficient tool for gene functional studies, represents a safe, efficient, and eco-friendly strategy for CPB control. Genetically modified (GM) crops that produce the toxins of Bacillus thuringiensis (Bt) have many advantages over agro-technical, mechanical, biological, and chemical measures. However, pest resistance that may occur and public acceptance of GM modified food crops are the main problems associated with Bt crops. Recent developments in the speed, cost, and accuracy of next generation sequencing are revolutionizing the discovery of single nucleotide polymorphisms (SNPs) and field of population genomics. There is a need for effective resistance monitoring programs that are capable of the early detection of resistance and successful implementation of integrated resistance management (IRM). The main focus of this review is on new technologies for CPB control (RNAi) and tools (SNPs) for detection of resistant CPB populations.
Collapse
Affiliation(s)
- Martina Kadoić Balaško
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (R.B.); (D.L.)
- Correspondence: ; Tel.: +385-1-239-3654
| | - Katarina M. Mikac
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522, Australia;
| | - Renata Bažok
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (R.B.); (D.L.)
| | - Darija Lemic
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (R.B.); (D.L.)
| |
Collapse
|
19
|
Bakhsh A. Development of Efficient, Reproducible and Stable Agrobacterium-Mediated Genetic Transformation of Five Potato Cultivars. Food Technol Biotechnol 2020; 58:57-63. [PMID: 32684788 PMCID: PMC7365336 DOI: 10.17113/ftb.58.01.20.6187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The developments in transformation technology have enabled the scientists to incorporate, mutate or substitute gene(s) leading to a particular trait; advancing it to a point where only few technical limitations remain. Genotype dependency and explant types are important factors affecting transformation efficiency in potato. In the present study, a rapid, reproducible and stable Agrobacterium-mediated transformation procedure in potato was developed by a combination of different plant growth regulators. Leaf discs and internodal explants of five cultivars of potato, i.e. Lady Olympia, Granola, Agria, Désirée and Innovator were infected with Agrobacterium tumefaciens strain LBA4404 containing pBIN19 expression vector with β-glucuronidase gusA gene under the control of 35S CaMV promoter. Kanamycin was used as plant selectable marker for screening of primary transformants at concentration of 100 mg/L. Both explants responded positively; internode being more suitable explant for better transformation efficiency. Based on GUS histochemical assay, the transformation efficiency was 22, 20, 18.6, 15 and 10% using the internodal explant, and 15, 12, 17, 8 and 6% using leaf discs as explant in Lady Olympia, Granola, Agria, Désirée and Innovator respectively. Furthermore, PCR assays confirmed the presence of gusA and nptII genes in regenerated plants. The molecular analysis in succeeding progeny showed proper integration and expression of both genes. The results suggest Lady Olympia as the best cultivar for future transformation procedures. Overall, the short duration, rapidity and reproducibility makes this protocol suitable for wider application of transgenic potato plants.
Collapse
Affiliation(s)
- Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| |
Collapse
|
20
|
Carli GJD, Rotela AT, Lubini G, Contiliani DF, Candia NB, Depintor TS, Abreu FCPD, Simões ZLP, Ríos DF, Pereira TC. SSD - a free software for designing multimeric mono-, bi- and trivalent shRNAs. Genet Mol Biol 2020; 43:e20190300. [PMID: 32141472 PMCID: PMC7197978 DOI: 10.1590/1678-4685-gmb-2019-0300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
RNA interference (RNAi) is a powerful gene silencing technology, widely used in
analyses of reverse genetics, development of therapeutic strategies and
generation of biotechnological products. Here we present a free software tool
for the rational design of RNAi effectors, named siRNA and shRNA designer (SSD).
SSD incorporates our previously developed software Strand Analysis to construct
template DNAs amenable for the large scale production of mono-, bi- and
trivalent multimeric shRNAs, via in vitro rolling circle
transcription. We tested SSD by creating a trivalent multimeric shRNA against
the vitellogenin gene of Apis mellifera. RT-qPCR analysis
revealed that our molecule promoted a decrease in more than 50% of the target
mRNA, in a dose-dependent manner, when compared to the control group. Thus, SSD
software allows the easy design of multimeric shRNAs, for single or multiple
simultaneous knockdowns, which is especially interesting for studies involving
large amounts of double-stranded molecules.
Collapse
Affiliation(s)
- Gabriel José de Carli
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Abdon Troche Rotela
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, San Lorenzo, Paraguay.,Universidad Nacional de Asunción, Facultad Politécnica, San Lorenzo, Paraguay
| | - Greice Lubini
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Danyel Fernandes Contiliani
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Nidia Benítez Candia
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, San Lorenzo, Paraguay
| | - Thiago S Depintor
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Fabiano Carlos Pinto de Abreu
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Zilá Luz Paulino Simões
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Danilo Fernández Ríos
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, San Lorenzo, Paraguay
| | - Tiago Campos Pereira
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Naqqash MN, Gökçe A, Aksoy E, Bakhsh A. Downregulation of imidacloprid resistant genes alters the biological parameters in Colorado potato beetle, Leptinotarsa decemlineata Say (chrysomelidae: Coleoptera). CHEMOSPHERE 2020; 240:124857. [PMID: 31726599 DOI: 10.1016/j.chemosphere.2019.124857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Colorado potato beetle, Leptinotarsa decemlineata Say (coleoptera: chrysomelidae), is the important pest of potato all over the world. This insect pest is resistant to more than 50 active compounds belonging to various chemical groups. Potential of RNA interference (RNAi) was explored to knock down transcript levels of imidacloprid resistant genes in Colorado potato beetle (CPB) under laboratory conditions. Three important genes belonging to cuticular protein (CP), cytochrome P450 monoxygenases (P450) and glutathione synthetase (GSS) families encoding imidacloprid resistance were targeted. Feeding bio-assays were conducted on various stages of imidacloprid resistant CPB lab population by applying HT115 expressing dsRNA on potato leaflets. Survival rate of insects exposed to CP-dsRNA decreased to 4.23%, 15.32% and 47.35% in 2nd, 3rd and 4th instar larvae respectively. Larval weight and pre-adult duration were also affected due to dsRNAs feeding. Synergism of RNAi with imidacloprid conducted on the 2nd instar larvae, exhibited 100% mortality of larvae when subjected to reduced doses of GSS and CP dsRNAs along with imidacloprid. Utilization of three different dsRNAs against imidacloprid resistant CPB population reveal that dsRNAs targeting CP, P450 and GSS enzymes could be useful tool in management of imidacloprid resistant CPB populations.
Collapse
Affiliation(s)
- Muhammad Nadir Naqqash
- Department of Plant Production & Technologies, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey.
| | - Ayhan Gökçe
- Department of Plant Production & Technologies, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey
| | - Emre Aksoy
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey.
| |
Collapse
|
22
|
Zhang Y, Xu L, Li S, Zhang J. Bacteria-Mediated RNA Interference for Management of Plagiodera versicolora (Coleoptera: Chrysomelidae). INSECTS 2019; 10:insects10120415. [PMID: 31766384 PMCID: PMC6955681 DOI: 10.3390/insects10120415] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023]
Abstract
RNA interference (RNAi) has emerged as a novel and feasible strategy for pest management. Methods for cost-effective production and stable delivery of double-stranded RNA (dsRNA) to the target insects are crucial for the wide application of RNAi for pest control. In this study, we tested the expression of dsRNA in RNaseIII-deficient Escherichia coli HT115 which was then fed to Plagiodera versicolora larvae, an insect pest of Salicaceae plants worldwide. By targeting six potential genes, including actin (ACT), signal recognition particle protein 54k (SRP54), heat shock protein 70 (HSC70), shibire (SHI), cactus (CACT), and soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAP), we found that feeding bacteria-expressed dsRNA successfully triggered the silencing of the five target genes tested and the suppression of ACT and SRP54 genes caused significant mortality. Our results suggest that the oral delivery of bacteria-expressed dsRNA is a potential alternative for the control of P. versicolora, and that ACT and SRP54 genes are the potent targets.
Collapse
|
23
|
Shen GM, Chen W, Li CZ, Ou SY, He L. RNAi targeting ecdysone receptor blocks the larva to adult development of Tetranychus cinnabarinus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:85-90. [PMID: 31400788 DOI: 10.1016/j.pestbp.2019.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
RNA interference (RNAi) is a potentially useful pest control method because of its high specificity. Silencing the expression of important RNAi target genes of pests will block important biological processes and reduce pest damage. Ecdysone is a unique arthropod hormone and the ecdysone receptor (EcR) is a key factor in molting pathway. We investigated the possibility that dsRNA targeting of the EcR of Tetranychus cinnabarinus (TcEcR) could effectively block development from larvae to adults. The mRNA level of TcEcR was highest in the larva stage, and 73.1% of the mites failed to survive the larva stage when TcEcR expression was silenced. Only 11.7% of T. cinnabarinus ingesting dsRNA successfully developed into adults, while 86.7% in the control succeeded in molting across each stage. RNAi significantly increased the developmental intervals of T. cinnabarinus. Under the effects of dsRNA, development times for the larva and first nymph doubled. Phenotype of body size change and death were observed during the development of T. cinnabarinus ingesting dsRNA. These findings suggest that RNAi is a potential means for the control of T. cinnabarinus. Genes in hormone pathways such as EcR are possible RNAi targets.
Collapse
Affiliation(s)
- Guang-Mao Shen
- College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wen Chen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chuan-Zhen Li
- College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shi-Yuan Ou
- College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|