1
|
Tummaruk P, De Rensis F, Kirkwood RN. Managing prolific sows in tropical environments. Mol Reprod Dev 2023; 90:533-545. [PMID: 36495558 DOI: 10.1002/mrd.23661] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Litter size in modern sows has been dramatically improved in recent decades by genetic selection for highly prolific sows. In a tropical environment, the average total number of pigs born and number born alive are reported to be as high as 17.2 and 15.1 piglets per litter, respectively. Therefore, the new production target in many herds aims to achieve 30-40 pigs weaned per sow per year. Despite the improvements in litter size, the mean preweaning piglet mortality rate remains high, at between 10% and 20%, in major pig-producing countries. A sufficient daily feed intake by lactating sows is important for high milk production as sow milk yield is the limiting factor for piglet growth rate. Heat stress, which can occur when the ambient temperatures rise above 25°C, is one of the major problems that decreases daily feed intake and compromises milk yield. Therefore, it is necessary to encourage high feed intakes to achieve high milk yields. However, even with high nutrient intakes, productivity can be constrained by intestinal barrier function, limiting digestive ability, and allowing potential pathogens and/or toxins to become systemic. This is more likely greater under tropical conditions because of heat stress, exacerbating sow fertility problems. Underpinning sow herd performance, including responses to environmental challenges, is the selection of appropriate gilts, for example, selection and management for early puberty, thus presumably selecting the more fertile gilts and the correct management of lactation to improve the number of weaned piglets are some of the key factors for future reproductive efficiency of the farm under tropical conditions.
Collapse
Affiliation(s)
- Padet Tummaruk
- Department of Obstetrics, Gynaecology and Reproduction, Centre of Excellence in Swine Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Fabio De Rensis
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Roy N Kirkwood
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
2
|
Landaeta-Hernández AJ, Ungerfeld R, Chenoweth PJ. Biostimulation and pheromones in livestock: A review. Anim Reprod Sci 2023; 248:107154. [PMID: 36495839 DOI: 10.1016/j.anireprosci.2022.107154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
This review examines aspects of the phenomenon of biostimulation in swine, goats, sheep, cattle and deer, to improve the collective knowledge and exploitation of its relevant mechanisms and effects in animal production. The long-term goal is to implement biostimulation strategies that benefit livestock reproduction and production while being both cost-effective and socially acceptable.
Collapse
Affiliation(s)
| | - Rodolfo Ungerfeld
- Universidad de la República, Facultad de Veterinaria, Montevideo, Uruguay
| | - Peter J Chenoweth
- James Cook University, College of Public Health, Medical and Veterinary Sciences Townsville, Queensland 4814, Australia
| |
Collapse
|
3
|
Wang Z, Fu H, Zhou Y, Yan M, Chen D, Yang M, Xiao S, Chen C, Huang L. Identification of the gut microbiota biomarkers associated with heat cycle and failure to enter oestrus in gilts. Microb Biotechnol 2021; 14:1316-1330. [PMID: 33305898 PMCID: PMC8313273 DOI: 10.1111/1751-7915.13695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 01/09/2023] Open
Abstract
Failed puberty is one of the main reasons for eliminating gilts from production herds. This is often caused by disorders of sex hormones. An increasing number of studies have suggested that the gut microbiota may regulate sex hormones and vice versa. Whether the gut microbiota is involved in the failure of oestrus in gilts remains unknown. We used 16S rRNA gene sequencing, network-based microbiota analysis and prediction of functional capacity from 16S rRNA gene sequences to explore the shifts in the gut microbiota throughout a heat cycle in 22 eight-month-old gilts. We found that a module of co-occurrence networks composed of Sphaerochaeta and Treponema, co-occurred with oestrus during a heat cycle. The mcode score of this module reflecting the stability and importance in the network achieved the highest value at the oestrus stage. We then identified bacterial biosignatures associated with the failure to show puberty in 163 gilts. Prevotella, Treponema, Faecalibacterium, Oribacterium, Succinivibrio and Anaerovibrio were enriched in gilts showing normal heat cycles, while Lachnospiraceae, Ruminococcus, Coprococcus and Oscillospira had higher abundance in gilts failing to show puberty. Prediction of functional capacity of the gut microbiome identified a lesser abundance of the pathway 'retinol metabolism' in gilts that failed to undergo puberty. This pathway was also significantly associated with those bacterial taxa involved in failed puberty identified in this study (P < 0.05). This result suggests that the changed gut bacteria might result in a disorder of retinol metabolism, and this may be an explanation for the failure to enter oestrus.
Collapse
Affiliation(s)
- Zhong Wang
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Hao Fu
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Yunyan Zhou
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Min Yan
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Dong Chen
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Ming Yang
- Zhongkai University of Agriculture and EngineeringGuangzhouGuangdong510225China
| | - Shijun Xiao
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| |
Collapse
|
4
|
Yuan X, Zhou X, Chen Z, He Y, Kong Y, Ye S, Gao N, Zhang Z, Zhang H, Li J. Genome-Wide DNA Methylation Analysis of Hypothalamus During the Onset of Puberty in Gilts. Front Genet 2019; 10:228. [PMID: 30941164 PMCID: PMC6433709 DOI: 10.3389/fgene.2019.00228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/28/2019] [Indexed: 12/30/2022] Open
Abstract
Although selection of the early age at puberty in gilts will make for a favorable effect on the reproductivity of sow, a large proportion of phenotypic variation in age at puberty of gilts cannot be explained by genetics. Previous studies have implicated hypothalamic DNA methylation in the onset of puberty in mammals. However, the underlying molecular mechanism regarding the regulation of the onset of puberty has remained largely unexplored in gilts. Herein, the genome-scale DNA methylation of hypothalamus was acquired, using the reduced representation bisulfite sequencing, to compare and describe the changes of DNA methylation across Pre-, In- and Post-pubertal gilts. In this study, the average methylation levels of CpGs and CpHs (where H = C, T, or A) in CpG islands- and gene-related regions were gradually decreased in hypothalamic methylomes during the pubertal transition. Comparisons of Pre- vs. In-, In- vs. Post-, and Pre- vs. Post-pubertal stage revealed that there were 85726, 92914, and 100421 differentially methylated CpGs and 5940, 14804, and 16893 differentially methylated CpHs (where H = C, T, or A) in the hypothalamic methylomes. The methylation changes of CpHs were more dynamic than that of CpGs, and methylation changes of CpGs and CpHs were likely to be, respectively, involved in the developmental processes of reproduction and the molecular processes of cellular communications in the hypothalamus. Moreover, methylation changes of CpHs were observed to overrepresent in the quantitative trait loci of age at puberty, and the biological function of these CpH methylation changes was enriched in the pancreas development in gilts. Furthermore, the mRNA levels of several differentially CpG or CpH methylated genes related to the transcription of RNA II polymerase, GnRH signaling pathway, Estrogen signaling pathway, PI3K-AKt signaling pathway, and Insulin signaling pathway, including MAX, MMP2, FGF11, IGF1R, FGF21, and GSK3B, were significantly changed across these pubertal stages in the hypothalamus. These results will help our understanding of how DNA methylation contributes to phenotypic variation of age at puberty.
Collapse
Affiliation(s)
- Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Zhou
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zitao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingting He
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaru Kong
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shaopan Ye
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ning Gao
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, Guangzhou, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Histological and transcriptome analyses of testes from Duroc and Meishan boars. Sci Rep 2016; 6:20758. [PMID: 26865000 PMCID: PMC4749976 DOI: 10.1038/srep20758] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Meishan boars are known for their early sexual maturity. However, they exhibit a significantly smaller testicular size and a reduced proportion of Sertoli cells and daily sperm production compared with Duroc boars. The testes of Duroc and Meishan boars at 20, 75 and 270 days of age were used for histological and transcriptome analyses. Haematoxylin-eosin staining was conducted to observe histological structure of the testes in Duroc and Meishan boars at different ages. Although spermatogenesis occurred prior to 75 days in Meishan boars, the number of spermatogonia and Sertoli cells in Meishan boars were less than in Duroc boars at adulthood. The diameters of the seminiferous tubules of the testes differed significantly during the initiation of development of the seminiferous tubules between the two breeds. We obtained differentially expressed functional genes and analysed seven pathways involved in male sexual maturity and spermatogenesis using RNA-seq. We also detected four main alternative splicing events and many single nucleotide polymorphisms from testes. Eight functionally important genes were validated by qPCR, and Neurotrophin 3 was subjected to quantification and cellular localization analysis. Our study provides the first transcriptome evidence for the differences in sexual function development between Meishan and Duroc boars.
Collapse
|