1
|
Hatipoglu D, Senturk G, Aydin SS, Kirar N, Top S, Demircioglu İ. Rye-grass-derived probiotics alleviate heat stress effects on broiler growth, health, and gut microbiota. J Therm Biol 2024; 119:103771. [PMID: 38134538 DOI: 10.1016/j.jtherbio.2023.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
The primary aim of this study was to assess the impact of liquid (S-LAB) and lyophilized (L-LAB) probiotics sourced from Rye-Grass Lactic Acid Bacteria on broilers experiencing heat stress. The study involved 240 broiler chicks divided into six groups. These groups included a negative control (Control) with broilers raised at a normal temperature (24 °C) on a basal diet, and positive control groups (S-LAB and L-LAB) with broilers under normal temperature receiving a lactic acid bacteria supplement (0.5 mL/L) from rye-grass in their drinking water. The heat stress group (HS) comprised broilers exposed to cyclic heat stress (5-7 h per day at 34-36 °C) on a basal diet, while the heat stress and probiotic groups (S-LAB/HS and L-LAB/HS) consisted of broilers under heat stress supplemented with the rye-grass-derived lactic acid bacteria. Results indicated that heat stress without supplementation (HS) led to reduced body weight gain, T3 levels, citrulline, and growth hormone levels, along with an increased feed conversion ratio, serum corticosterone, HSP70, ALT, AST, and leptin levels. Heat stress also negatively impacted cecal microbiota, decreasing lactic acid bacteria (LABC) while increasing E. coli and coliform bacteria (CBC) counts. Probiotic supplements (S-LAB/HS and L-LAB/HS) mitigated these effects by enhancing broilers' resilience to heat stress. In conclusion, rye grass-derived S-LAB and L-LAB probiotics can effectively support broiler chickens under heat stress, promoting growth, liver function, hormonal balance, gut health, and cecal microbiome ecology. These benefits are likely mediated through improved gut health.
Collapse
Affiliation(s)
- Durmus Hatipoglu
- Selcuk University, Faculty of Veterinary Medicine, Department of Physiology, 42130, Konya, Turkey.
| | - Goktug Senturk
- Aksaray University, Faculty of Veterinary Medicine, Department of Physiology, 68100, Aksaray, Turkey
| | - Sadik Serkan Aydin
- Harran University, Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, 63200, Şanlıurfa, Turkey
| | - Nurcan Kirar
- Harran University, Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, 63200, Şanlıurfa, Turkey
| | - Sermin Top
- Harran University, Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, 63200, Şanlıurfa, Turkey
| | - İsmail Demircioglu
- Harran University, Faculty of Veterinary Medicine, Department of Anatomy, 63200, Sanliurfa, Turkey
| |
Collapse
|
2
|
Oladokun S, Adewole DI. Biomarkers of heat stress and mechanism of heat stress response in Avian species: Current insights and future perspectives from poultry science. J Therm Biol 2022; 110:103332. [DOI: 10.1016/j.jtherbio.2022.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
|
3
|
Heat stress in poultry with particular reference to the role of probiotics in its amelioration: An updated review. J Therm Biol 2022; 108:103302. [DOI: 10.1016/j.jtherbio.2022.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022]
|
4
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Ding C, Luo T, Qiu X. Non-Targeted Metabolomic Analysis of Chicken Kidneys in Response to Coronavirus IBV Infection Under Stress Induced by Dexamethasone. Front Cell Infect Microbiol 2022; 12:945865. [PMID: 35909955 PMCID: PMC9335950 DOI: 10.3389/fcimb.2022.945865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Stress in poultry can lead to changes in body metabolism and immunity, which can increase susceptibility to infectious diseases. However, knowledge regarding chicken responses to viral infection under stress is limited. Dexamethasone (Dex) is a synthetic glucocorticoid similar to that secreted by animals under stress conditions, and has been widely used to induce stress in chickens. Herein, we established a stress model in 7-day-old chickens injected with Dex to elucidate the effects of stress on IBV replication in the kidneys. The metabolic changes, immune status and growth of the chickens under stress conditions were comprehensively evaluated. Furthermore, the metabolic profile, weight gain, viral load, serum cholesterol levels, cytokines and peripheral blood lymphocyte ratio were compared in chickens treated with Dex and infected with IBV. An LC-MS/MS-based metabolomics method was used to examine differentially enriched metabolites in the kidneys. A total of 113 metabolites whose abundance was altered after Dex treatment were identified, most of which were lipids and lipid-like molecules. The principal metabolic alterations in chicken kidneys caused by IBV infection included fatty acid, valine, leucine and isoleucine metabolism. Dex treatment before and after IBV infection mainly affected the host’s tryptophan, phenylalanine, amino sugar and nucleotide sugar metabolism. In addition, Dex led to up-regulation of serum cholesterol levels and renal viral load in chickens, and to the inhibition of weight gain, peripheral blood lymphocytes and IL-6 production. We also confirmed that the exogenous cholesterol in DF-1 cells promoted the replication of IBV. However, whether the increase in viral load in kidney tissue is associated with the up-regulation of cholesterol levels induced by Dex must be demonstrated in future experiments. In conclusion, chick growth and immune function were significantly inhibited by Dex. Host cholesterol metabolism and the response to IBV infection are regulated by Dex. This study provides valuable insights into the molecular regulatory mechanisms in poultry stress, and should support further research on the intrinsic link between cholesterol metabolism and IBV replication under stress conditions.
Collapse
Affiliation(s)
- Jun Dai
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tingrong Luo
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- *Correspondence: Xusheng Qiu, ; Tingrong Luo,
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Tingrong Luo,
| |
Collapse
|
5
|
|
6
|
Growth Performance and Characterization of Meat Quality of Broiler Chickens Supplemented with Betaine and Antioxidants under Cyclic Heat Stress. Antioxidants (Basel) 2019; 8:antiox8090336. [PMID: 31443527 PMCID: PMC6769705 DOI: 10.3390/antiox8090336] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Heat stress (HS) causes oxidative stress, which compromises broiler performance and meat quality. The aim of this study was to determine whether dietary antioxidants could be used as an amelioration strategy. Seventy-two day-old-male Ross-308 chicks were exposed to either thermoneutral or cyclical heat stress conditions. Diets were either control commercial diet (CON), CON plus betaine (BET), or with a combination of betaine, selenized yeast, and vitamin E (BET + AOX). Heat stress increased the rectal temperature (p < 0.001), respiration rate (p < 0.001), decreased blood pCO2 (p = 0.002), and increased blood pH (p = 0.02), which indicated the HS broilers had respiratory alkalosis. Final body weight was decreased by HS (p < 0.001), whereas it was improved with BET (p = 0.05). Heat stress reduced cooking loss (p = 0.007) and no effect on drip loss, while BET decreased the drip loss (p = 0.01). Heat stress reduced the myofibril fragmentation index (p < 0.001) and increased thiobarbituric acid reactive substances (p < 0.001), while these were improved with the combination of BET + AOX (p = 0.003). In conclusion, BET overall improved growth rates and product quality in this small university study, whereas some additional benefits were provided by AOX on product quality in both TN and HS broilers.
Collapse
|
7
|
He S, Li S, Arowolo MA, Yu Q, Chen F, Hu R, He J. Effect of resveratrol on growth performance, rectal temperature and serum parameters of yellow-feather broilers under heat stress. Anim Sci J 2019; 90:401-411. [DOI: 10.1111/asj.13161] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/04/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Shaoping He
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| | - Si Li
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| | | | - Qifang Yu
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| | - Fu Chen
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| | - Ruizhi Hu
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| | - Jianhua He
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| |
Collapse
|
8
|
Badr G, Ramadan NK, Abdel-Tawab HS, Ahmed SF, Mahmoud MH. Camel whey protein protects lymphocytes from apoptosis via the PI3K–AKT, NF-κB, ATF-3, and HSP-70 signaling pathways in heat-stressed male mice. Biochem Cell Biol 2018; 96:407-416. [DOI: 10.1139/bcb-2017-0217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heat stress (HS) is an environmental factor that depresses the immune systems that mediate dysfunctional immune cells. Camel whey protein (CWP) can scavenge free radicals and enhance immunity. This study investigated the impact of dietary supplementation with CWP on immune dysfunction induced by exposure to HS. Male mice (n = 45) were distributed among 3 groups: control group; HS group; and HS mice that were orally administered CWP (HS + CWP group). The HS group exhibited elevated levels of reactive oxygen species (ROS) and pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, tumor necrosis factor-α) as well as a significant reduction in the IL-2 and IL-4 levels. Exposure to HS resulted in impaired phosphorylation of AKT and IκB-α (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha); increased expression of activating transcription factor 3 (ATF-3) and 70 kDa heat shock proteins (HSP70); and aberrant distribution of CD3+ T cells and CD20+ B cells in the thymus and spleen. Interestingly, HS mice treated with CWP presented significantly restored levels of reactive oxygen species and pro-inflammatory cytokines near the levels observed in the control mice. Furthermore, supplementation of HS mice with CWP enhanced the phosphorylation of AKT and IκB-α; attenuated the expression of ATF-3, HSP70, and HSP90; and improved T and B cell distributions in the thymus and spleen. Our findings reveal a potential immunomodulatory effect of CWP in attenuating immune dysfunction induced by exposure to thermal stress.
Collapse
Affiliation(s)
- Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Nancy K. Ramadan
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
- Animal Health Research Institute, Assiut Branch, Assiut, Egypt
| | | | - Samia F. Ahmed
- Animal Health Research Institute, Assiut Branch, Assiut, Egypt
| | - Mohamed H. Mahmoud
- Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia
- Food Science and Nutrition Department, National Research Center, Dokki, 12622 Cairo, Egypt
| |
Collapse
|