1
|
Gabriel ANA, Wang XY, Zu GY, Zhen PY, Jamil L, Shen SJ, Li C, Theoneste N, Zhao L, Cao WC. Geospatial and modelling analyses reveal diverse tick and tick-associated microbes in the East African Community. Infect Dis Poverty 2025; 14:39. [PMID: 40405314 PMCID: PMC12096497 DOI: 10.1186/s40249-025-01310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/27/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND The continuous geographic expansion of ticks and the emergence of tick-borne diseases have raised tremendous global public health concerns, particularly in the East African Community (EAC). This study aimed to investigate the distribution of ticks and tick-associated microbes and to predict the potential extension of dominant tick species in the EAC. METHODS Data were collected from literature reviews and related websites and analyzed using ArcGIS to generate maps showing the geographical distribution of ticks and associated microbes. Meta-analyses were conducted to estimate the positive rates of microbes. Ecological niche modelling was used to project the potential expansion of predominant tick species. RESULTS A total of 138 tick species were recorded in the seven EAC countries, including five genera of the Argasidae family, eight of the Ixodidae family, and monospecific Nuttalliellidae. Overall, 64 tick-associated microbes, including 22 viruses, 26 bacteria, and 16 protists, were identified, of which 43 (11 viruses, 21 bacteria, and 11 protists) were pathogenic to humans or animals. Among them, 5 (2 viruses and 3 bacteria) have been reported in humans, while 10 pathogens (1 virus, 4 bacteria, and 5 protists) have been reported in animals. The predictive model identified suitable habitats for four dominant tick species, with certain species flourishing under ideal conditions, such as elevation, temperature, and vegetation. Our study revealed that ticks might affect broader areas where they have never been previously reported. CONCLUSIONS Ticks are widely prevalent in the EAC, and some ticks harbor a variety of microbial agents that can have significant pathogenetic implications for human and animal health. Therefore, EAC authorities and medical personnel should acknowledge the potential threat posed by ticks and tick-associated pathogens to the well-being of people and animals. Surveillance and etiological diagnosis should be enhanced to control ticks and prevent tick-borne infections.
Collapse
Affiliation(s)
- Abakundana Nsenga Ariston Gabriel
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xiao-Yang Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Guo-Yao Zu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Pei-Yu Zhen
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Laila Jamil
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Shi-Jing Shen
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Cheng Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Ntakirutimana Theoneste
- School of Public Health, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| |
Collapse
|
2
|
Khogali R, Bastos A, Getange D, Bargul JL, Kalayou S, Ongeso N, Verhoeven JTP, Kabii J, Ngiela J, Masiga D, Villinger J. Exploring the microbiomes of camel ticks to infer vector competence: insights from tissue-level symbiont-pathogen relationships. Sci Rep 2025; 15:5574. [PMID: 39955302 PMCID: PMC11830091 DOI: 10.1038/s41598-024-81313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/26/2024] [Indexed: 02/17/2025] Open
Abstract
Ticks are blood-feeding ectoparasites that harbor diverse pathogens and endosymbionts. Their microbial communities vary based on tick species, stage, sex, geographical location, surrounding environment, and tissue type. Understanding tick microbiota at the tissue level is crucial for unraveling how microbiomes are distributed in tick tissues and influence pathogen transmission. We used V1-V2 16 S rRNA gene sequencing to analyze tissue-specific bacterial compositions (hemolymph, saliva, salivary glands, and midgut) of Amblyomma gemma, Rhipicephalus pulchellus, Hyalomma dromedarii, and Hyalomma rufipes ticks collected from camels in Marsabit County, northern Kenya. The V1-V2 region of the 16 S rRNA gene effectively differentiated 43 Rickettsia africae and 16 Rickettsia aeschlimannii tick samples from other rickettsial species, as well as Coxiella endosymbionts from Coxiella burnetii. In contrast, the V3-V4 region sequences of these species could not be clearly distinguished. Coxiella endosymbionts were most common in Am. gemma and Rh. pulchellus, while Francisella endosymbionts predominated in Hyalomma ticks; both were primarily localized in the salivary glands. High abundances of Coxiella endosymbionts, as well as Pseudomonas, were associated with the absence or low abundance of Rickettsia pathogens in both Am. gemma and Rh. pulchellus, suggesting competitive interactions between these microbes. Additionally, Proteus mirabilis, an opportunistic pathogen of the urinary tract in humans, was found predominantly in Hyalomma ticks, except for the salivary glands, which were most abundant with Francisella endosymbionts. Furthermore, we detected the Acinetobacter, Pseudomonas, and Corynebacterium genera in all the tick tissues, supporting the hypothesis that these bacteria might circulate between camel blood and ticks. Saliva and hemolymph generally harbored more extracellular bacteria than the salivary glands and midgut. This study provides a new approach to unravel tick-endosymbiont-pathogen interactions by examining the tissue localization of tick-borne pathogens and symbionts in Am. gemma, Rh. pulchellus, Hy. dromedarii, and Hy. rufipes from camels in northern Kenya. Our findings establish a baseline for developing an understanding of the functional capacities of symbionts and for designing symbiont-based control strategies.
Collapse
Affiliation(s)
- Rua Khogali
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria, 0028, South Africa.
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 32, Khartoum North, Sudan.
| | - Armanda Bastos
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria, 0028, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Dennis Getange
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya
| | - Shewit Kalayou
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Nehemiah Ongeso
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern, CH-3012, Switzerland
| | - Joost Theo Petra Verhoeven
- Centre for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - James Kabii
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - John Ngiela
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
3
|
Khogali R, Bastos A, Bargul JL, Getange D, Kabii J, Masiga D, Villinger J. Tissue-specific localization of tick-borne pathogens in ticks collected from camels in Kenya: insights into vector competence. Front Cell Infect Microbiol 2024; 14:1382228. [PMID: 38698904 PMCID: PMC11063324 DOI: 10.3389/fcimb.2024.1382228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Background Tick-borne pathogen (TBP) surveillance studies often use whole-tick homogenates when inferring tick-pathogen associations. However, localized TBP infections within tick tissues (saliva, hemolymph, salivary glands, and midgut) can inform pathogen transmission mechanisms and are key to disentangling pathogen detection from vector competence. Methods We screened 278 camel blood samples and 504 tick tissue samples derived from 126 camel ticks sampled in two Kenyan counties (Laikipia and Marsabit) for Anaplasma, Ehrlichia, Coxiella, Rickettsia, Theileria, and Babesia by PCR-HRM analysis. Results Candidatus Anaplasma camelii infections were common in camels (91%), but absent in all samples from Rhipicephalus pulchellus, Amblyomma gemma, Hyalomma dromedarii, and Hyalomma rufipes ticks. We detected Ehrlichia ruminantium in all tissues of the four tick species, but Rickettsia aeschlimannii was only found in Hy. rufipes (all tissues). Rickettsia africae was highest in Am. gemma (62.5%), mainly in the hemolymph (45%) and less frequently in the midgut (27.5%) and lowest in Rh. pulchellus (29.4%), where midgut and hemolymph detection rates were 17.6% and 11.8%, respectively. Similarly, in Hy. dromedarii, R. africae was mainly detected in the midgut (41.7%) but was absent in the hemolymph. Rickettsia africae was not detected in Hy. rufipes. No Coxiella, Theileria, or Babesia spp. were detected in this study. Conclusions The tissue-specific localization of R. africae, found mainly in the hemolymph of Am. gemma, is congruent with the role of this tick species as its transmission vector. Thus, occurrence of TBPs in the hemolymph could serve as a predictor of vector competence of TBP transmission, especially in comparison to detection rates in the midgut, from which they must cross tissue barriers to effectively replicate and disseminate across tick tissues. Further studies should focus on exploring the distribution of TBPs within tick tissues to enhance knowledge of TBP epidemiology and to distinguish competent vectors from dead-end hosts.
Collapse
Affiliation(s)
- Rua Khogali
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan
| | - Armanda Bastos
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Dennis Getange
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - James Kabii
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
4
|
Zhang J, Wang J, Wang C. Whole Genome Sequencing and Comparative Analysis of the First Ehrlichia canis Isolate in China. Microorganisms 2024; 12:125. [PMID: 38257951 PMCID: PMC10820421 DOI: 10.3390/microorganisms12010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Ehrlichia canis, a prominent tick-borne pathogen causing canine monocytic ehrlichiosis (CME), is one of the six recognized Ehrlichia species worldwide. Despite its widespread presence in ticks and host dogs in China, comprehensive genomic information about this pathogen remains limited. This study focuses on an in-depth analysis of E. canis YZ-1, isolated and cultured from an infected dog in China. The complete genome of E. canis YZ-1 was sequenced (1,314,789 bp, 1022 genes, 29% GC content, and 73% coding bases), systematically characterizing its genomic elements and functions. Comparative analysis with representative genomes of Ehrlichia species, including E. canis strain Jake, E. chaffeensis, Ehrlichia spp., E. muris, E. ruminantium, and E. minasensis, revealed conserved genes, indicating potential evolutionary connections with E. ruminantium. The observed reduction in virulence-associated genes, coupled with a type IV secretion system (T4SS), suggests an intricate balance between pathogenicity and host adaptation. The close relationship with E. canis Jake and E. chaffeensis, alongside nuanced genomic variations with E. ruminantium and E. mineirensis, underscores the need to explore emerging strains and advancements in sequencing technologies continuously. This genetic insight opens avenues for innovative medications, studies on probiotic resistance, development of new detection markers, and progress in vaccine development for ehrlichiosis. Further investigations into the functional significance of identified genes and their role in host-pathogen interactions will contribute to a more holistic comprehension of Ehrlichia's biology and its implications for pathogenicity and transmission.
Collapse
Affiliation(s)
- Jilei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jiawei Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Chengming Wang
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
5
|
El-Alfy ES, Abbas I, Saleh S, Elseadawy R, Fereig RM, Rizk MA, Xuan X. Tick-borne pathogens in camels: A systematic review and meta-analysis of the prevalence in dromedaries. Ticks Tick Borne Dis 2024; 15:102268. [PMID: 37769585 DOI: 10.1016/j.ttbdis.2023.102268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Published data on tick-borne pathogens (TBPs) in camels worldwide have been collected to provide an overview of the global prevalence and species diversity of camelid TBPs. Several TBPs have been detected in dromedary camels, raising concerns regarding their role as natural or maintenance hosts for tick-borne pathogens. Insubstantial evidence exists regarding the natural infection of camels with Babesia spp., Theileria spp., Anaplasma spp., and Ehrlichia spp., particularly because most of the camels were considered healthy at the time of sampling. Based on polymerase chain reaction (PCR) testing, a pooled prevalence of 35.3% (95% CI: 22.6-48.1%) was estimated for Anaplasma, which was the most frequently tested TBP in dromedaries, and DNA of Anaplasma marginale, Anaplasma centrale, Anaplasma ovis, Anaplasma platys, and A. platys-like were isolated, of which ruminants and dogs are reservoirs. Similarly, the estimated pooled prevalence for the two piroplasmid genera; Babesia and Theileria was approximately equal (10-12%) regardless of the detection method (microscopy or PCR testing). Nevertheless, Babesia caballi, Theileria equi, and Theileria annulata DNA have frequently been detected in camels but they have not yet been proven to be natural hosts. Scarce data detected Babesia microti, Anaplasma phagocytophilum, and Borrelia burgdorferi sensu lato (s.l.) DNA in blood of dromedaries, although ticks of the genus Ixodes are distributed in limited areas where dromedaries are raised. Interestingly, a pooled seroprevalence of 47.7% (26.3-69.2%) was estimated for Crimean-Congo hemorrhagic fever virus, and viral RNA was detected in dromedary blood; however, their contribution to maintain the viral transmission cycles requires further experimental investigation. The substantially low incidence and scarcity of data on Rickettsia and Ehrlichia species could imply that camels were accidentally infected. In contrast, camels may play a role in the spread of Coxiella burnetii, which is primarily transmitted through the inhalation of aerosols emitted by diseased animals and contaminated environments. Bactrian camels showed no symptoms due to the examined TBPs, meanwhile, clinical disease was seen in alpacas infected with A. phagocytophilum. Similar to dromedaries, accidental tick bites may be the cause of TBP DNA found in the blood of Bactrian camels.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Abbas
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Somaya Saleh
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rana Elseadawy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ragab M Fereig
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| |
Collapse
|
6
|
MALDI-TOF MS Identification of Dromedary Camel Ticks and Detection of Associated Microorganisms, Southern Algeria. Microorganisms 2022; 10:microorganisms10112178. [DOI: 10.3390/microorganisms10112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
This study used MALDI-TOF MS and molecular tools to identify tick species infesting camels from Tamanrasset in southern Algeria and to investigate their associated microorganisms. Ninety-one adult ticks were collected from nine camels and were morphologically identified as Hyalomma spp., Hyalomma dromedarii, Hyalomma excavatum, Hyalomma impeltatum and Hyalomma anatolicum. Next, the legs of all ticks were subjected to MALDI-TOF MS, and 88/91 specimens provided good-quality MS spectra. Our homemade MALDI-TOF MS arthropod spectra database was then updated with the new MS spectra of 14 specimens of molecularly confirmed species in this study. The spectra of the remaining tick specimens not included in the MS database were queried against the upgraded database. All 74 specimens were correctly identified by MALDI-TOF MS, with logarithmic score values ranging from 1.701 to 2.507, with median and mean values of 2.199 and 2.172 ± 0.169, respectively. One H. impeltatum and one H. dromedarii (2/91; 2.20%) tested positive by qPCR for Coxiella burnetii, the agent of Q fever. We also report the first detection of an Anaplasma sp. close to A. platys in H. dromedarii in Algeria and a potentially new Ehrlichia sp. in H. impeltatum.
Collapse
|
7
|
Selmi R, Belkahia H, Sazmand A, Ben Said M, Messadi L. Epidemiology and genetic characteristics of tick-borne bacteria in dromedary camels of the world. Acta Trop 2022; 234:106599. [PMID: 35810831 DOI: 10.1016/j.actatropica.2022.106599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/01/2022]
Abstract
This review presents updated knowledge on the main tick-borne bacteria infecting one-humped camels (Camelus dromedarius) around the world. Camels are increasingly the subject of several scientific investigations, showing that they are receptive and carriers of several zoonotic bacteria. An appraisal is also given of the relative public health importance of these bacterial infections according to One Health concept. Microscopic, serologic and molecular findings are appropriately generated in order to exploit epidemiological data, and phylogeographic specificities associated to each vector-borne bacterium. Indeed, camels and their ticks harbour similar species and genotypes of pathogenic bacteria commonly identified in other animals, e.g., Anaplasma spp.,Ehrlichia spp., Borrelia spp., Rickettsia spp., Coxiella burnetii, Bartonella spp. and hemotrophic mycoplasmas. This evidence suggests an epidemiological role of camels in the spread of these pathogens in their natural habitats. However, these infections are commonly asymptomatic in camels resulting in underestimation of the impact of these infections. Furthermore, camels have recently been proven to have their own specific unclassified strains, such as Candidatus Anaplasma camelii and Candidatus Bartonella camelii, implying that possible interactions may lead to the emergence of pathogenic and zoonotic bacteria. In camel-rearing areas of the world, spatial and temporal spread of these infections, due to climatic and ecological changes and human activities such as development projects and urbanization, is expected. Hence the data presented herein provides a basis for strategic frameworks for the research and the development of novel diagnosis and control strategies worldwide, which are needed to protect camels, other livestock, and people in contact with dromedaries from threats that arthropod-borne pathogens can pose.
Collapse
Affiliation(s)
- Rachid Selmi
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia; Ministry of National Defense, General Directorate of Military Health, Military center of Veterinary Medicine, Tunis, Tunisia.
| | - Hanène Belkahia
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6517658978, Iran
| | - Mourad Ben Said
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia; Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Lilia Messadi
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia.
| |
Collapse
|
8
|
Collins M, Ngetich C, Owido M, Getange D, Harris R, Bargul JL, Bodha B, Njoroge D, Muloi D, Martins DJ, Villinger J, Githaka N, Baylis M, Fèvre EM, Kanduma E, Younan M, Bell-Sakyi L. Detection of Antibodies to Ehrlichia spp. in Dromedary Camels and Co-Grazing Sheep in Northern Kenya Using an Ehrlichia ruminantium Polyclonal Competitive ELISA. Microorganisms 2022; 10:microorganisms10050916. [PMID: 35630361 PMCID: PMC9144424 DOI: 10.3390/microorganisms10050916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
A disease with clinical and post-mortem presentation similar to those seen in heartwater, a tick-borne disease of domestic and wild ruminants caused by the intracellular bacterium Ehrlichia ruminantium, was first reported in dromedary camels in Kenya in 2016; investigations carried out at the time to determine the cause were inconclusive. In the present study, we screened sera from Kenyan camels collected before (2015) and after (2020) the 2016 disease outbreak for antibodies to Ehrlichia spp. using an E. ruminantium polyclonal competitive ELISA (PC-ELISA). Median antibody levels were significantly higher (p < 0.0001) amongst camels originating from areas where the heartwater-like disease was reported than from disease-free areas, for animals sampled in both 2015 and 2020. Overall median seropositivity was higher in camels sampled in 2015 than in 2020, which could have been due to higher mean age in the former group. Camels that were PCR-positive for Candidatus Ehrlichia regneryi had significantly lower (p = 0.03) median antibody levels than PCR-negative camels. Our results indicate that Kenyan camels are frequently exposed to E. ruminantium from an early age, E. ruminantium was unlikely to have been the sole cause of the outbreak of heartwater-like disease; and Ca. E. regneryi does not appreciably cross-react with E. ruminantium in the PC-ELISA.
Collapse
Affiliation(s)
- Marisol Collins
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (R.H.); (D.M.); (M.B.); (E.M.F.)
| | - Collins Ngetich
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (C.N.); (M.O.); (N.G.)
| | - Milton Owido
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (C.N.); (M.O.); (N.G.)
| | - Dennis Getange
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya; (D.G.); (J.L.B.)
| | - Robert Harris
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (R.H.); (D.M.); (M.B.); (E.M.F.)
| | - Joel L. Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya; (D.G.); (J.L.B.)
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| | - Boku Bodha
- Directorate of Veterinary Services, County Government of Marsabit, Marsabit P.O. Box 384-60500, Kenya;
| | - Daniel Njoroge
- Department of Biochemistry and Molecular Biology, Faculty of Science, Egerton University, Njoro P.O. Box 536-20115, Kenya;
| | - Dishon Muloi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (R.H.); (D.M.); (M.B.); (E.M.F.)
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (C.N.); (M.O.); (N.G.)
| | | | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| | - Naftaly Githaka
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (C.N.); (M.O.); (N.G.)
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (R.H.); (D.M.); (M.B.); (E.M.F.)
| | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (R.H.); (D.M.); (M.B.); (E.M.F.)
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (C.N.); (M.O.); (N.G.)
| | - Esther Kanduma
- Department of Biochemistry, Faculty of Science and Technology, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Mario Younan
- Food and Agriculture Organisation of the United Nations (FAO), Programme and Operational Support to Syria Crisis, UN Cross-Border Hub, Gaziantep 27010, Turkey;
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (R.H.); (D.M.); (M.B.); (E.M.F.)
- Correspondence:
| |
Collapse
|
9
|
Chiuya T, Villinger J, Masiga DK, Ondifu DO, Murungi MK, Wambua L, Bastos ADS, Fèvre EM, Falzon LC. Molecular prevalence and risk factors associated with tick-borne pathogens in cattle in western Kenya. BMC Vet Res 2021; 17:363. [PMID: 34838023 PMCID: PMC8627057 DOI: 10.1186/s12917-021-03074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background Tick-borne pathogens (TBPs) are of global importance, especially in sub-Saharan Africa where they represent a major constraint to livestock production. Their association with human disease is also increasingly recognized, signalling their zoonotic importance. It is therefore crucial to investigate TBPs prevalence in livestock populations and the factors associated with their presence. We set out to identify TBPs present in cattle and to determine associated risk factors in western Kenya, where smallholder livestock production is important for subsistence and market-driven income. Results Tick-borne pathogen infections in blood samples collected from cattle at livestock markets and slaughterhouses between May 2017 and January 2019 were identified by high-resolution melting analysis and sequencing of PCR products of genus-specific primers. Of the 422 cattle sampled, 30.1% (127/422) were infected with at least one TBP, while 8.8% (37/422) had dual infections. Anaplasma spp. (19.7%) were the most prevalent, followed by Theileria (12.3%), Ehrlichia (6.6%), and Babesia (0.2%) spp. Sequence analysis of the TBPs revealed them to be Anaplasma platys-like organisms (13.5%), Theileria velifera (7.4%), Anaplasma marginale (4.9%), Theileria mutans (3.1%), Theileria parva (1.6%), and Babesia bigemina (0.2%). Ehrlichia ruminantium, Rickettsia spp., and arboviruses were not detected. Exotic breeds of cattle were more likely to be infected with A. marginale compared to local breeds (OR: 7.99, 95% CI: 3.04–22.02, p < 0.001). Presence of ticks was a significant predictor for Anaplasma spp. (OR: 2.18, 95% CI: 1.32–3.69, p = 0.003) and Ehrlichia spp. (OR: 2.79, 95% CI: 1.22–7.23, p = 0.022) infection. Cattle sampled at slaughterhouses were more likely to be positive for Anaplasma spp. (OR: 1.64, 95% CI: 1.01–2.70, p = 0.048) and A. marginale (OR: 3.84, 95% CI: 1.43–12.21, p = 0.012), compared to those sampled at livestock markets. Conclusion This study reports TBP prevalence and associated risk factors in western Kenya, factors which are key to informing surveillance and control measures.
Collapse
Affiliation(s)
- Tatenda Chiuya
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772-00100, Nairobi, Kenya. .,Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria, 0028, South Africa.
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772-00100, Nairobi, Kenya
| | - Daniel K Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772-00100, Nairobi, Kenya
| | - Dickens O Ondifu
- International Centre of Insect Physiology and Ecology (icipe), P.O Box 30772-00100, Nairobi, Kenya
| | - Maurice K Murungi
- International Livestock Research Institute, Old Naivasha Road, P.O Box 30709, Nairobi, 00100, Kenya
| | - Lillian Wambua
- International Livestock Research Institute, Old Naivasha Road, P.O Box 30709, Nairobi, 00100, Kenya
| | - Armanda D S Bastos
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria, 0028, South Africa
| | - Eric M Fèvre
- International Livestock Research Institute, Old Naivasha Road, P.O Box 30709, Nairobi, 00100, Kenya.,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK
| | - Laura C Falzon
- International Livestock Research Institute, Old Naivasha Road, P.O Box 30709, Nairobi, 00100, Kenya. .,Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK.
| |
Collapse
|
10
|
Bargul JL, Kidambasi KO, Getahun MN, Villinger J, Copeland RS, Muema JM, Carrington M, Masiga DK. Transmission of 'Candidatus Anaplasma camelii' to mice and rabbits by camel-specific keds, Hippobosca camelina. PLoS Negl Trop Dis 2021; 15:e0009671. [PMID: 34398891 PMCID: PMC8389426 DOI: 10.1371/journal.pntd.0009671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/26/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Anaplasmosis, caused by infection with bacteria of the genus Anaplasma, is an important veterinary and zoonotic disease. Transmission by ticks has been characterized but little is known about non-tick vectors of livestock anaplasmosis. This study investigated the presence of Anaplasma spp. in camels in northern Kenya and whether the hematophagous camel ked, Hippobosca camelina, acts as a vector. Camels (n = 976) and > 10,000 keds were sampled over a three-year study period and the presence of Anaplasma species was determined by PCR-based assays targeting the Anaplasmataceae 16S rRNA gene. Camels were infected by a single species of Anaplasma, 'Candidatus Anaplasma camelii', with infection rates ranging from 63-78% during the dry (September 2017), wet (June-July 2018), and late wet seasons (July-August 2019). 10-29% of camel keds harbored 'Ca. Anaplasma camelii' acquired from infected camels during blood feeding. We determined that Anaplasma-positive camel keds could transmit 'Ca. Anaplasma camelii' to mice and rabbits via blood-feeding. We show competence in pathogen transmission and subsequent infection in mice and rabbits by microscopic observation in blood smears and by PCR. Transmission of 'Ca. Anaplasma camelii' to mice (8-47%) and rabbits (25%) occurred readily after ked bites. Hence, we demonstrate, for the first time, the potential of H. camelina as a vector of anaplasmosis. This key finding provides the rationale for establishing ked control programmes for improvement of livestock and human health.
Collapse
Affiliation(s)
- Joel L. Bargul
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Kevin O. Kidambasi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Merid N. Getahun
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Robert S. Copeland
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Jackson M. Muema
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Daniel K. Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
11
|
Getange D, Bargul JL, Kanduma E, Collins M, Bodha B, Denge D, Chiuya T, Githaka N, Younan M, Fèvre EM, Bell-Sakyi L, Villinger J. Ticks and Tick-Borne Pathogens Associated with Dromedary Camels ( Camelus dromedarius) in Northern Kenya. Microorganisms 2021; 9:1414. [PMID: 34209060 PMCID: PMC8306667 DOI: 10.3390/microorganisms9071414] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Ticks and tick-borne pathogens (TBPs) are major constraints to camel health and production, yet epidemiological data on their diversity and impact on dromedary camels remain limited. We surveyed the diversity of ticks and TBPs associated with camels and co-grazing sheep at 12 sites in Marsabit County, northern Kenya. We screened blood and ticks (858 pools) from 296 camels and 77 sheep for bacterial and protozoan TBPs by high-resolution melting analysis and sequencing of PCR products. Hyalomma (75.7%), Amblyomma (17.6%) and Rhipicephalus (6.7%) spp. ticks were morphologically identified and confirmed by molecular analyses. We detected TBP DNA in 80.1% of blood samples from 296 healthy camels. "Candidatus Anaplasma camelii", "Candidatus Ehrlichia regneryi" and Coxiella burnetii were detected in both camels and associated ticks, and Ehrlichia chaffeensis, Rickettsia africae, Rickettsia aeschlimannii and Coxiella endosymbionts were detected in camel ticks. We also detected Ehrlichia ruminantium, which is responsible for heartwater disease in ruminants, in Amblyomma ticks infesting camels and sheep and in sheep blood, indicating its endemicity in Marsabit. Our findings also suggest that camels and/or the ticks infesting them are disease reservoirs of zoonotic Q fever (C. burnetii), ehrlichiosis (E. chaffeensis) and rickettsiosis (R. africae), which pose public health threats to pastoralist communities.
Collapse
Affiliation(s)
- Dennis Getange
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (D.G.); (T.C.)
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (D.G.); (T.C.)
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Esther Kanduma
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Marisol Collins
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (E.M.F.); (L.B.-S.)
| | - Boku Bodha
- Directorate of Veterinary Services, County Government of Marsabit, Marsabit P.O. Box 384-60500, Kenya; (B.B.); (D.D.)
| | - Diba Denge
- Directorate of Veterinary Services, County Government of Marsabit, Marsabit P.O. Box 384-60500, Kenya; (B.B.); (D.D.)
| | - Tatenda Chiuya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (D.G.); (T.C.)
| | - Naftaly Githaka
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya;
| | - Mario Younan
- Food and Agriculture Organization of the United Nations (FAO), Programme & Operational Support to Syria Crisis, UN cross-border hub, Gaziantep 27010, Turkey;
| | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (E.M.F.); (L.B.-S.)
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya;
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (E.M.F.); (L.B.-S.)
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (D.G.); (T.C.)
| |
Collapse
|