1
|
Asin J, Calvete C, Uzal FA, Crossley BM, Duarte MD, Henderson EE, Abade dos Santos F. Rabbit hemorrhagic disease virus 2, 2010-2023: a review of global detections and affected species. J Vet Diagn Invest 2024; 36:617-637. [PMID: 39344909 PMCID: PMC11457751 DOI: 10.1177/10406387241260281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Rabbit hemorrhagic disease virus 2/genotype GI.2 (RHDV2/GI.2; Caliciviridae, Lagovirus) causes a highly contagious disease with hepatic necrosis and disseminated intravascular coagulation in several Leporidae species. RHDV2 was first detected in European rabbits (Oryctolagus cuniculus) in France in 2010 and has since spread widely. We gather here data on viral detections reported in various countries and affected species, and discuss pathology, genetic differences, and novel diagnostic aspects. RHDV2 has been detected almost globally, with cases reported in Europe, Africa, Oceania, Asia, and North America as of 2023. Since 2020, large scale outbreaks have occurred in the United States and Mexico and, at the same time, cases have been reported for the first time in previously unaffected countries, such as China, Japan, Singapore, and South Africa, among others. Detections have been notified in domestic and wild European rabbits, hares and jackrabbits (Lepus spp.), several species of cottontail and brush rabbits (Sylvilagus spp.), pygmy rabbits (Brachylagus idahoensis), and red rock rabbits (Pronolagus spp.). RHDV2 has also been detected in a few non-lagomorph species. Detection of RHDV2 causing RHD in Sylvilagus spp. and Leporidae species other than those in the genera Oryctolagus and Lepus is very novel. The global spread of this fast-evolving RNA virus into previously unexploited geographic areas increases the likelihood of host range expansion as new species are exposed; animals may also be infected by nonpathogenic caliciviruses that are disseminated by almost all species, and with which genetic recombination may occur.
Collapse
Affiliation(s)
- Javier Asin
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | - Carlos Calvete
- Animal Science Department, Agri-Food Research and Technology Centre of Aragon (CITA), Agri-Food Institute of Aragón (IA2), Zaragoza, Spain
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | | | | | - Eileen E. Henderson
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | - Fábio Abade dos Santos
- National Institute for Agrarian and Veterinary Research (INIAV), Oeiras, Portugal
- Faculty of Veterinary Medicine, Lusofona University, Lisboa, Portugal
| |
Collapse
|
2
|
Sun Z, An Q, Li Y, Gao X, Wang H. Epidemiological characterization and risk assessment of rabbit haemorrhagic disease virus 2 (RHDV2/b/GI.2) in the world. Vet Res 2024; 55:38. [PMID: 38532494 DOI: 10.1186/s13567-024-01286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/02/2024] [Indexed: 03/28/2024] Open
Abstract
A novel variant of rabbit haemorrhagic disease virus, designated RHDV2/b/GI.2, was first discovered in France in 2010. Subsequently, RHDV2 rapidly spread to Africa, North America, Australia, and Asia. RHDV2 outbreaks have resulted in significant economic losses in the global rabbit industry and disrupted the balance of natural ecosystems. Our study investigated the seasonal characteristics of RHDV2 outbreaks using seasonal indices. RHDV2 is prone to causing significant outbreaks within domestic and wild rabbit populations during the spring season and is more likely to induce outbreaks within wild rabbit populations during late autumn in the Southern Hemisphere. Furthermore, based on outbreak data for domestic and wild rabbits and environmental variables, our study established two MaxEnt models to explore the relationship between RHDV2 outbreaks and the environmental factors and conducted outbreak risk predictions for RHDV2 in global domestic and wild rabbit populations. Both models demonstrated good predictive performance, with AUC values of 0.960 and 0.974, respectively. Road density, isothermality, and population density were identified as important variables in the outbreak of RHDV2 in domestic rabbits, while road density, normalized difference vegetation index, and mean annual solar radiation were considered key variables in the outbreak of RHDV2 in wild rabbits. The environmental factors associated with RHDV2 outbreaks identified in our study and the outbreak risk prediction maps generated in our study will aid in the formulation of appropriate RHDV2 control measures to reduce the risk of morbidity in domestic and wild rabbits.
Collapse
Affiliation(s)
- Zhuo Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qi An
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuepeng Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiang Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
3
|
Daodu OB, Shaibu JO, Aderounmu EA, Jolaoso TO, Oluwayelu DO, Akanbi OB, Olorunshola ID, Aiyedun JO, Oludairo OO, Audu RA, Daodu OC. Seromolecular surveillance of rabbit haemorrhagic disease virus in Nigeria. Trop Anim Health Prod 2023; 55:327. [PMID: 37749427 DOI: 10.1007/s11250-023-03753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Following the first 2020 rabbit haemorrhagic disease virus (RHDV) outbreak in Nigeria which caused massive mortalities in several rabbitries, there was a need to know the spread and strains circulating in the affected states. Over 100 rabbitries still existing post-RHDV outbreak in Ogun and Kwara States were investigated. A commercial enzyme-linked immunosorbent assay kit was used to screen for RHDV immunoglobulin G in 192 rabbit sera, while RHDV VP60 gene was amplified in RNA extracted from these sera and tissues (liver and/or spleen harvested from 37 carcasses necrotized) by reverse transcription-polymerase chain reaction (RT-PCR). Sequences obtained from the amplicons were subjected to phylogenetic analysis. The results revealed a seroprevalence of 82.3% (158/192). RHDV VP60 gene was detected in 15/17 (88.2%) and 2/20 (10.0%) carcasses from Ogun and Kwara States, respectively, while none of the sera was positive. Sequences of the two positive amplicons selected (one from each states) shared 98.95% nucleotide identity and belonged to RHDV 2/GI.2 strain. Also, nBLAST of these sequences revealed 98.43-99.55% homology with the prototype Nigerian RHDV strain RHDV/NGR/ILN/001 (MT996357.1). Furthermore, these strains clustered with this prototype and a German RHDV strain (LR899166.1). Pathologic lesions affecting the respiratory, cardiovascular, renal, lymphatic, and digestive systems were observed in necropsied carcasses. This study indicated that RHDV 2/GI.2 strain was the cause of 2020 RHD outbreak in Nigeria. Thus, while continuous public sensitization about RHD especially among rabbit farmers in Nigeria is important, efforts aimed at design and implementation of RHD vaccination policy, preferably using indigenous seed, should be expedited.
Collapse
Affiliation(s)
- Oluwafemi Babatunde Daodu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State, Nigeria.
| | - Joseph Ojonugwa Shaibu
- Center for Human Virology and Genomics, Nigerian Institute for Medical Research, Yaba, Lagos State, Nigeria
| | | | - Taiwo Oluwole Jolaoso
- Ogun State Ministry of Agriculture and Rural Development, Ogun State, Abeokuta, Nigeria
| | - Daniel Oladimeji Oluwayelu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Olatunde Babatunde Akanbi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Isaac Dayo Olorunshola
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Julius Olaniyi Aiyedun
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Oladapo Oyedeji Oludairo
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Rosemary Ajuma Audu
- Center for Human Virology and Genomics, Nigerian Institute for Medical Research, Yaba, Lagos State, Nigeria
| | - Oluwakemi Christiana Daodu
- Department of Wildlife and Ecotourism, Faculty of Agriculture and Forestry, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
4
|
Sahraoui L, Lahouassa H, Maziz-Bettahar S, Lopes AM, Almeida T, Ainbaziz H, Abrantes J. First detection and molecular characterization of rabbit hemorrhagic disease virus (RHDV) in Algeria. Front Vet Sci 2023; 10:1235123. [PMID: 37745217 PMCID: PMC10513046 DOI: 10.3389/fvets.2023.1235123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023] Open
Abstract
Since the first detection of rabbit hemorrhagic disease (RHD), the rabbit hemorrhagic disease virus (RHDV) has been responsible for high morbidity and mortality worldwide, both in domestic and in wild rabbits. Despite the apparent control of RHD in rabbitries through vaccination, several studies highlighted the rapid evolution of RHDV by recombination, which may facilitate the emergence of new pathogenic strains. The aim of this study was to confirm the presence and characterize RHDV in Algeria. For this, rabbit samples were collected in the north of Algeria, between 2018 and 2021, from small farms where the virus was suspected after the sudden death of a high number of rabbits, and from healthy hunted wild rabbits. The domestic rabbits revealed clinical signs and lesions that were suggestive of RHD. RT-PCR showed that 79.31% of the domestic rabbit samples were positive for RHDV, while in 20.69%, including the hunted rabbits, the virus was not detected. Phylogenetic analysis of the Algerian strains allowed the confirmation and identification as GI.2 (RHDV2), and showed a close relation to GI.3P-GI.2 recombinant strains, suggesting a potential introduction from other countries, with an older strain potentially originated from neighboring Tunisia, while more recent isolates grouped with strains from North America. Our study reports for the first time the presence of GI.2 (RHDV2) in Algeria with multiple routes of introduction. Consequently, we propose that RHDV control in Algeria should be based on epidemiological surveys in association with an adequate prophylactic program.
Collapse
Affiliation(s)
- Lynda Sahraoui
- Laboratory of Animal Health and Production, Higher National Veterinary School of Algiers, Algiers, Algeria
| | - Hichem Lahouassa
- Laboratory of Animal Health and Production, Higher National Veterinary School of Algiers, Algiers, Algeria
| | - Samia Maziz-Bettahar
- Laboratory of Animal Health and Production, Higher National Veterinary School of Algiers, Algiers, Algeria
- Institute of Veterinary Sciences, Saad Dahlab University of Blida1, Blida, Algeria
| | - Ana M. Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Tereza Almeida
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Hacina Ainbaziz
- Laboratory of Animal Health and Production, Higher National Veterinary School of Algiers, Algiers, Algeria
| | - Joana Abrantes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Ayeni MD, Adewumi MO, Bello MA, AdiAdi KF, Osungade AA. Effects of rabbit production on income and livelihood of rural households in Nigeria. Heliyon 2023; 9:e18568. [PMID: 37576253 PMCID: PMC10412989 DOI: 10.1016/j.heliyon.2023.e18568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Aims More effort and actions are needed to combat the rising levels of food insecurity and poverty in developing countries, particularly among rural households. Rural households can significantly contribute to reducing poverty, enhancing their nutritional condition, and enhancing their standard of living by engaging in rabbit production but there are few empirical studies on the contribution of rabbit production to households' livelihood and income. Therefore, this study examines how producing rabbits affects rural farmers' income and household livelihood in Nigeria. Methods and results Multiple regression and descriptive statistics were used to analyze the data gathered from 240 rabbit farms. The findings demonstrated that rabbit farming is a male-dominated enterprise (male 77.5%). According to the regression analysis, the income of rural households was positively and significantly impacted by the income from rabbits. Farmers' ages, interactions with extension agents, credit they accessed, and assets were further determinants of their income. Additionally, rabbit production improved the level of living of rural households. Access to forage, the prevalence of diseases, scarcity of veterinary, and the high cost of medication, were the severe constraints faced in rabbit production. Conclusions It may be concluded that rabbit production had a significant contribution to the economic situation, way of life, and well-being of rural households. Although there were some constraints with the operation. Females are to be encouraged in rabbit production as livelihood diversification. Also, it is crucial that banks, governments, and non-governmental organizations offer farmers easily accessible and reasonable loan facilities as this will boost their revenue. Training on forage production and storage is also recommended. Significance and the impact of the study Participation will be improved by having an understanding of how rabbit farming affects the income and way of life of rural dwellers. As a result, the findings of this study would enable policymakers to intervene in enhancing its production thereby encouraging more farmers to be involved in the production and also, enhancing the well-being of rural households.
Collapse
Affiliation(s)
- Matthew Durojaiye Ayeni
- Department of Agricultural Economics and Extension, College of Agricultural Sciences, Landmark University, Omuaran, Nigeria
| | - Matthew Olaniyi Adewumi
- Department of Agricultural Economics and Farm Management, University of Ilorin, Ilorin, Nigeria
| | - Muhammad Adeiza Bello
- Department of Agricultural Economics and Farm Management, University of Ilorin, Ilorin, Nigeria
| | | | - Adeola Adenike Osungade
- Department of Agricultural Economics and Farm Management, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
6
|
Confirmation of the Rabbit Hemorrhagic Disease Virus Type 2 (GI.2) Circulation in North Africa. ACTA VET-BEOGRAD 2022. [DOI: 10.2478/acve-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Rabbit hemorrhagic disease (RHD) is a highly contagious viral disease that causes fatal acute hepatitis in domestic and wild lagomorphs. It has taken on major economic importance in countries like Morocco. In addition to the classical virus (RHDV), a novel emerged genotype (RHDV2) is circulating, especially in the north shore of the Mediterranean basin since 2010. Many small animal farmers reported clinical cases from several rabbitries in Agadir (Morocco) despite systematic vaccination against the RHDV. The main objective was to characterize the current RHDV strains circulating in the studied area to help to choose an adequate vaccine. For that, we extracted viral RNA from rabbit livers, carried out the PCR analyses, and we sequenced the viral structural capsid protein (VP60) of the RHDV. The phylogenetic analysis results allowed us to state that the novel genotype (RHDV2) is circulating in the studied geographical area, and to characterize the isolated sequences. As a conclusion, we recommend updating RHD epidemiological relating data and reviewing the vaccine protocols by both targeting RHDV (GI.1) and RHDV2 (GI.2) in any future preventive program.
Collapse
|
7
|
Al-Ebshahy E, Abas O, Abo-ElKhair M. Co-circulation of GI.1 and GI.2 genotypes of rabbit hemorrhagic disease virus in Egypt. Virusdisease 2022; 33:422-428. [PMID: 36447817 PMCID: PMC9701251 DOI: 10.1007/s13337-022-00791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
Recently, Egypt has experienced an increased incidence of rabbit hemorrhagic disease virus (RHDV) infection even among vaccinated rabbits. The present study estimates the emergence of RHDV in vaccinated (n = 10) and unvaccinated (n = 8) domestic rabbitries in Beheira and Kafr El-Sheikh provinces, Egypt, during the period 2018-2020. A total of 8 out of 18 (44.4%) liver extracts were able to agglutinate human type O RBCs with HA titers ranged from 8 to 12 log2, and then subsequently confirmed for the presence of RHDV RNA using a reverse transcriptase-polymerase chain reaction (RT-PCR). The VP60 gene sequences of three selected isolates, designated Beh-1, Beh-9 and kaf-14, were submitted to the GenBank database and the accession numbers MZ782083 to MZ782085 were assigned, respectively. Phylogenetic analysis revealed that the Kaf-14 isolate was placed into the GI.1 genotype, while the Beh-1 and Beh-9 isolates were grouped into the GI.2 genotype. Overall, the three isolates shared 78.6-98.7%.nucleotide identity with previously published Egyptian sequences. In comparison with the GI.1a Giza2006 vaccine strain, the three isolates exhibited divergence ranging from 4.5 to 17.4% at the amino acid level. Approximately 55.5-87.5% of the amino acid substitutions were located in the P2 subdomain of the VP60 capsid protein which contains the main determinants of antigenicity and cellular recognition. In conclusion, our results provide crucial evidence for the co-circulation of RHDV GI.1 and GI.2 genotypes in Egypt and highlight the antigenic diversity among vaccine and field strains. Therefore, new effective vaccines are urgently required to counter the spread of GI.1 and GI.2 genotypes in Egypt.
Collapse
Affiliation(s)
- Emad Al-Ebshahy
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Osama Abas
- Department of Animal Medicine, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
8
|
Ben Chehida F, Lopes AM, Côrte-Real JV, Sghaier S, Aouini R, Messadi L, Abrantes J. Multiple Introductions of Rabbit Hemorrhagic Disease Virus Lagovirus europaeus/GI.2 in Africa. BIOLOGY 2021; 10:883. [PMID: 34571760 PMCID: PMC8471427 DOI: 10.3390/biology10090883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
Rabbit hemorrhagic disease (RHD) causes high mortality and morbidity in European rabbits (Oryctolagus cuniculus). In Africa, the presence of the causative agent, the rabbit hemorrhagic disease virus (RHDV), was first confirmed in 1992 (genotype Lagovirus europaeus/GI.1). In 2015, the new genotype Lagovirus europaeus/GI.2 (RHDV2/b) was detected in Tunisia. Currently, GI.2 strains are present in several North and Sub-Saharan African countries. Considerable economic losses have been observed in industrial and traditional African rabbitries due to RHDV. Like other RNA viruses, this virus presents high recombination rates, with the emergence of GI.2 being associated with a recombinant strain. Recombination events have been detected with both pathogenic (GI.1b and GII.1) and benign (GI.3 and GI.4) strains. We obtained complete genome sequences of Tunisian GI.2 strains collected between 2018 and 2020 and carried out phylogenetic analyses. The results revealed that Tunisian strains are GI.3P-GI.2 strains that were most likely introduced from Europe. In addition, the results support the occurrence of multiple introductions of GI.2 into Africa, stressing the need for characterizing complete genome sequences of the circulating lagoviruses to uncover their origin. Continued monitoring and control of rabbit trade will grant a better containment of the disease and reduce the disease-associated economic losses.
Collapse
Affiliation(s)
- Faten Ben Chehida
- Laboratory of Microbiology, Immunology and General Pathology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (F.B.C.); (R.A.); (L.M.)
| | - Ana M. Lopes
- CIBIO/InBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (A.M.L.); (J.V.C.-R.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Unidade Multidisciplinar de Investigação Biomédica (UMIB), Universidade do Porto, 4050-313 Porto, Portugal
| | - João V. Côrte-Real
- CIBIO/InBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (A.M.L.); (J.V.C.-R.)
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Soufien Sghaier
- Department of Virology, Institution of Agricultural Research and Higher Education, Tunisian Institute of Veterinary Research (IRVT), University of Tunis El Manar, Tunis 1006, Tunisia;
| | - Rim Aouini
- Laboratory of Microbiology, Immunology and General Pathology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (F.B.C.); (R.A.); (L.M.)
| | - Lilia Messadi
- Laboratory of Microbiology, Immunology and General Pathology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (F.B.C.); (R.A.); (L.M.)
| | - Joana Abrantes
- CIBIO/InBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (A.M.L.); (J.V.C.-R.)
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|