1
|
Dhiman A, Kumar V, Das CJ. Quantitative magnetic resonance imaging in prostate cancer: A review of current technology. World J Radiol 2024; 16:497-511. [PMID: 39494137 PMCID: PMC11525833 DOI: 10.4329/wjr.v16.i10.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024] Open
Abstract
Prostate cancer (PCa) imaging forms an important part of PCa clinical management. Magnetic resonance imaging is the modality of choice for prostate imaging. Most of the current imaging assessment is qualitative i.e., based on visual inspection and thus subjected to inter-observer disagreement. Quantitative imaging is better than qualitative assessment as it is more objective, and standardized, thus improving interobserver agreement. Apart from detecting PCa, few quantitative parameters may have potential to predict disease aggressiveness, and thus can be used for prognosis and deciding the course of management. There are various magnetic resonance imaging-based quantitative parameters and few of them are already part of PIRADS v.2.1. However, there are many other parameters that are under study and need further validation by rigorous multicenter studies before recommending them for routine clinical practice. This review intends to discuss the existing quantitative methods, recent developments, and novel techniques in detail.
Collapse
Affiliation(s)
- Ankita Dhiman
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi 110029, Delhi, India
| | - Virendra Kumar
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi 110029, Delhi, India
| | - Chandan Jyoti Das
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi 110029, Delhi, India
| |
Collapse
|
2
|
Alanezi ST, Kraśny MJ, Kleefeld C, Colgan N. Differential Diagnosis of Prostate Cancer Grade to Augment Clinical Diagnosis Based on Classifier Models with Tuned Hyperparameters. Cancers (Basel) 2024; 16:2163. [PMID: 38893281 PMCID: PMC11171700 DOI: 10.3390/cancers16112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
We developed a novel machine-learning algorithm to augment the clinical diagnosis of prostate cancer utilizing first and second-order texture analysis metrics in a novel application of machine-learning radiomics analysis. We successfully discriminated between significant prostate cancers versus non-tumor regions and provided accurate prediction between Gleason score cohorts with statistical sensitivity of 0.82, 0.81 and 0.91 in three separate pathology classifications. Tumor heterogeneity and prediction of the Gleason score were quantified using two feature selection approaches and two separate classifiers with tuned hyperparameters. There was a total of 71 patients analyzed in this study. Multiparametric MRI, incorporating T2WI and ADC maps, were used to derive radiomics features. Recursive feature elimination (RFE), the least absolute shrinkage and selection operator (LASSO), and two classification approaches, incorporating a support vector machine (SVM) (with randomized search) and random forest (RF) (with grid search), were utilized to differentiate between non-tumor regions and significant cancer while also predicting the Gleason score. In T2WI images, the RFE feature selection approach combined with RF and SVM classifiers outperformed LASSO with SVM and RF classifiers. The best performance was achieved by combining LASSO and SVM into a model that used both T2WI and ADC images. This model had an area under the curve (AUC) of 0.91. Radiomic features computed from ADC and T2WI images were used to predict three groups of Gleason score using two kinds of feature selection methods (RFE and LASSO), RF and SVM classifier models with tuned hyperparameters. Using combined sequences (T2WI and ADC map images) and combined radiomics (1st and GLCM features), LASSO, with a feature selection method with RF, was able to predict G3 with the highest sensitivity at a level AUC of 0.92. To predict G3 for single sequence (T2WI images) using GLCM features, LASSO with SVM achieved the highest sensitivity with an AUC of 0.92.
Collapse
Affiliation(s)
- Saleh T. Alanezi
- Department of Physics, College of Science, Northern Border University, Arar P.O. Box 1321, Saudi Arabia
- Department of Physics, School of Natural Sciences, College of Science and Engineering, University of Galway, H91 TK33 Galway, Ireland; (M.J.K.); (C.K.); (N.C.)
| | - Marcin Jan Kraśny
- Department of Physics, School of Natural Sciences, College of Science and Engineering, University of Galway, H91 TK33 Galway, Ireland; (M.J.K.); (C.K.); (N.C.)
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, University of Galway, H91 V4AY Galway, Ireland
| | - Christoph Kleefeld
- Department of Physics, School of Natural Sciences, College of Science and Engineering, University of Galway, H91 TK33 Galway, Ireland; (M.J.K.); (C.K.); (N.C.)
| | - Niall Colgan
- Department of Physics, School of Natural Sciences, College of Science and Engineering, University of Galway, H91 TK33 Galway, Ireland; (M.J.K.); (C.K.); (N.C.)
- Faculty of Engineering & Informatics, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| |
Collapse
|
3
|
Jaen-Lorites JM, Ruiz-Espana S, Pineiro-Vidal T, Santabarbara JM, Maceira AM, Moratal D. Multiclass Classification of Prostate Tumors Following an MR Image Analysis-Based Radiomics Approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1436-1439. [PMID: 36086478 DOI: 10.1109/embc48229.2022.9871746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Prostate cancer is one of the most common cancers in men, with symptoms that may be confused with those caused by benign prostatic hyperplasia. One of the key aspects of treating prostate cancer is its early detection, increasing life expectancy and improving the quality of life of those patients. However, the tests performed are often invasive, resulting in a biopsy. A non-invasive alternative is the magnetic resonance imaging (MRI)-based PI-RADS v2 classification. The aim of this work was to find objective biomarkers that allow the PI-RADS classification of prostate lesions using a radiomics approach on Multiparametric MRI. A total of 90 subjects were analyzed. From each segmented lesion, 609 different texture features were extracted using five different statistical methods. Two feature selection methods and eight multiclass predictive models were evaluated. This was a multiclass study in which the best AUC result was 0.7442 ± 0.0880, achieved with the Naïve Bayes model using a subset of 120 features. Valuable results were also obtained using the Random Forests model, obtaining an AUC of 0.7394 ± 0.0965 with a lower number of features (52). Clinical Relevance- The current study establishes a methodology for classifying prostate cancer and supporting clinical decision-making in a fast and efficient manner and avoiding additional invasive procedures using MRI.
Collapse
|
4
|
Quantifying Tumor Heterogeneity from Multiparametric Magnetic Resonance Imaging of Prostate Using Texture Analysis. Cancers (Basel) 2022; 14:cancers14071631. [PMID: 35406403 PMCID: PMC8997150 DOI: 10.3390/cancers14071631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) occurs in males at a rate of 21.8%, predominantly at the customary primary site. High cure rates are possible through early detection and therapy when the tumor is still restricted to the prostate. These tumors do not grow rapidly, allowing for periods of up to 20 years between diagnosis and death. Multiparametric MRI (mp-MRI) is used as a non-invasive approach to diagnose PCa in subjects. This imaging method uses MR imaging with at least one functional MRI sequence to detect and characterize PCa. The use of multiparametric magnetic resonance imaging has refined the diagnosis of prostate cancer in radiology. Malignancy-modified critical features in tissue composition, such as heterogeneity, are associated with adverse tumor biology. Heterogeneity can be quantified through texture analysis, an effective technique for reviewing tumor images acquired in routine clinical practice. This study focused on identifying and quantifying tumor heterogeneity from prostate mp-MRI utilizing texture analysis. Abstract (1) Background: Multiparametric MRI (mp-MRI) is used to manage patients with PCa. Tumor identification via irregular sampling or biopsy is problematic and does not allow the comprehensive detection of the phenotypic and genetic alterations in a tumor. A non-invasive technique to clinically assess tumor heterogeneity is also in demand. We aimed to identify tumor heterogeneity from multiparametric magnetic resonance images using texture analysis (TA). (2) Methods: Eighteen patients with prostate cancer underwent mp-MRI scans before prostatectomy. A single radiologist matched the histopathology report to single axial slices that best depicted tumor and non-tumor regions to generate regions of interest (ROIs). First-order statistics based on the histogram analysis, including skewness, kurtosis, and entropy, were used to quantify tumor heterogeneity. We compared non-tumor regions with significant tumors, employing the two-tailed Mann–Whitney U test. Analysis of the area under the receiver operating characteristic curve (ROC-AUC) was used to determine diagnostic accuracy. (3) Results: ADC skewness for a 6 × 6 px filter was significantly lower with an ROC-AUC of 0.82 (p = 0.001). The skewness of the ADC for a 9 × 9 px filter had the second-highest result, with an ROC-AUC of 0.66; however, this was not statistically significant (p = 0.08). Furthermore, there were no substantial distinctions between pixel filter size groups from the histogram analysis, including entropy and kurtosis. (4) Conclusions: For all filter sizes, there was poor performance in terms of entropy and kurtosis histogram analyses for cancer diagnosis. Significant prostate cancer may be distinguished using a textural feature derived from ADC skewness with a 6 × 6 px filter size.
Collapse
|
5
|
Zapała P, Kozikowski M, Dybowski B, Zapała Ł, Dobruch J, Radziszewski P. External validation of a magnetic resonance imaging-based algorithm for prediction of side-specific extracapsular extension in prostate cancer. Cent European J Urol 2021; 74:327-333. [PMID: 34729221 PMCID: PMC8552930 DOI: 10.5173/ceju.2021.0128.r2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/22/2023] Open
Abstract
Introduction Recently developed algorithm for prediction of side-specific extracapsular extension (ECE) of prostate cancer required validation before being recommended to use. The algorithm assumed that ECE on a particular side was not likely with same side maximum tumor diameter (MTD) <15 mm AND cancerous tissue in ipsilateral biopsy <15% AND PSA <20 ng/mL (both sides condition). The aim of the study was to validate this predictive tool in patients from another department. Material and methods Data of 154 consecutive patients (308 prostatic lateral lobes) were used for validation. Predictive factors chosen in the development set of patients were assessed together with other preoperative parameters using logistic regression to check for their significance. Sensitivity, specificity, negative and positive predictive values were calculated for bootstrapped risk-stratified validation dataset. Results Validation cohort did not differ significantly from development cohort regarding PSA, PSA density, Gleason score (GS), MTD, age, ECE and seminal vesicle invasion rate. In bootstrapped data set (n = 200 random sampling) algorithm revealed 70.2% sensitivity (95% confidence interval (CI) 58.8–83.0%), 49.9% specificity (95%CI: 42.0–57.7%), 83.9% negative predictive value (NPV; 95%CI: 76.1–91.4%) and 31.1% positive predictive value (PPV; 95%CI: 19.6–39.7%). When limiting analysis to high-risk patients (Gleason score >7) the algorithm improved its performance: sensitivity 91%, specificity 47%, PPV 53%, NPV 89%. Conclusions Analyzed algorithm is useful for identifying prostate lobes without ECE and deciding on ipsilateral nerve-sparing technique during radical prostatectomy, especially in patients with GS >7. Due to significant number of false positives in case of: MTD ≥15 mm OR cancer in biopsy ≥15% OR PSA ≥20 ng/mL additional evaluation is necessary to aid decision-making.
Collapse
Affiliation(s)
- Piotr Zapała
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Poland
| | - Mieszko Kozikowski
- Department of Urology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Bartosz Dybowski
- Department of Urology, Roefler Memorial Hospital, Pruszków, Poland.,Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - Łukasz Zapała
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Poland
| | - Jakub Dobruch
- Department of Urology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Piotr Radziszewski
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Poland
| |
Collapse
|
6
|
Zhang XN, Bai M, Ma KR, Zhang Y, Song CR, Zhang ZX, Cheng JL. The Value of Magnetic Resonance Imaging Histograms in the Preoperative Differential Diagnosis of Endometrial Stromal Sarcoma and Degenerative Hysteromyoma. Front Surg 2021; 8:726067. [PMID: 34568419 PMCID: PMC8461251 DOI: 10.3389/fsurg.2021.726067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/26/2021] [Indexed: 01/31/2023] Open
Abstract
Objective: The present study aimed to explore the application value of magnetic resonance imaging (MRI) histograms with multiple sequences in the preoperative differential diagnosis of endometrial stromal sarcoma (ESS) and degenerative hysteromyoma (DH). Methods: The clinical and preoperative MRI data of 20 patients with pathologically confirmed ESS and 24 patients with pathologically confirmed DH were retrospectively analyzed, forming the two study groups. Mazda software was used to select the MRI layer with the largest tumor diameter in T2WI, the apparent diffusion coefficient (ADC), and enhanced T1WI (T1CE) images. The region of interest (ROI) was outlined for gray-scale histogram analysis. Nine parameters—the mean, variance, kurtosis, skewness, 1st percentile, 10th percentile, 50th percentile, 90th percentile, and 99th percentile—were obtained for intergroup analysis, and the receiver operating curves (ROCs) were plotted to analyze the differential diagnostic efficacy for each parameter. Results: In the T2WI histogram, the differences between the two groups in seven of the parameters (mean, skewness, 1st percentile, 10th percentile, 50th percentile, 90th percentile, and 99th percentile) were statistically significant (P < 0.05). In the ADC histogram, the differences between the two groups in three of the parameters (skewness, 10th percentile, and 50th percentile) were statistically significant (P < 0.05). In the T1CE histogram, no significant differences were found between the two groups in any of the parameters (all P > 0.05). Of the nine parameters, the 50th percentile was found to have the best diagnostic efficacy. In the T2WI histogram, ROC curve analysis of the 50th percentile yielded the best area under the ROC curve (AUC; 0.742), sensitivity of 70%, and specificity of 83.3%. In the ADC histogram, ROC curve analysis of the 50th percentile yielded the best area under the ROC curve (AUC; 0.783), sensitivity of 81%, and specificity of 76.9%. Conclusion: The parameters of the mean, 10th percentile and 50th percentile in the T2WI histogram have good diagnostic efficacy, providing new methods and ideas for clinical diagnosis.
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Man Bai
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke-Ran Ma
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cheng-Ru Song
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zan-Xia Zhang
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Liang Cheng
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Garcia J, Compte A, Galan C, Cozar M, Buxeda M, Mourelo S, Piñeiro T, Soler M, Valls E, Bassa P, Santabarbara J. 18F-choline PET/MR in the initial staging of prostate cancer. Impact on the therapeutic approach. Rev Esp Med Nucl Imagen Mol 2021. [DOI: 10.1016/j.remnie.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
18F-choline PET/MRI on initial staging of prostate cancer. Impact on therapy approach. Rev Esp Med Nucl Imagen Mol 2021; 40:72-81. [PMID: 33579662 DOI: 10.1016/j.remn.2020.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022]
Abstract
AIM Evaluate the therapy impact of initial staging in patients diagnosed with prostate cancer by 18 F-choline PET/MRI hybrid technique. MATERIAL A prospective study which included 31 patients diagnosed with prostate cancer; Gleason > 7; mean PSA 13.6 ng/mL (range 6.3-20.6). PET/MRI studies were acquired simultaneously with hybrid equipment (SIGNA.3T, GE) following intravenous injection of 185 ± 18.5MBq of 18F-choline: - Early/prostate imaging: PET emission + multiparametric MR: DIXON-T1-T2-diffusion-gadolinium. - Late/whole-body imaging: PET emission + MR: DIXON-T1-T2-diffusion-STIR sequences. Images were visually evaluated. SUV & ADC & textures were also calculated. Treatment selection was based upon Oncology Committee consensus decision. RESULTS Procedure was well tolerated in all patients, and no artifacts were reported. MRI was superior in T staging in eight patients (25.8%) (Likert: 2-3), whereas PET increased MRI sensitivity in three patients (9.7%) (PIRADS: 3). PROSTATE LESION LOCATION Peripheral 91.4%, transitional 8.6%. SUVmax threshold: 2.95: sensitivity 92.9%, specificity 66.7%. No correlation SUV vs. ADC. Better distinction between stage T2 vs. T3 using the DiscrLin model with NG = 16 (AUC 0.7767 ± 0.3386). PET was superior to T2 in textures analysis (0.588 vs. 0.412). Seventeen patients (54.8%) were staged ≥ T3, with surgical treatment being contraindicated. Fifteen patients (48.4%) presented with extra-prostatic disease: 8/31 oligometastatic and 7/31 multiple metastasis. Therapy approach following PET/MRI was: radical treatment in 24/31 patients (77.4%), 14 radical prostatectomy and 10 MRI-guided radiotherapy; systemic treatment in 7/31 patients (22.6%). CONCLUSION 18F-choline PET/MRI had a complementary role for the T staging, with a high detection rate for NM infiltration. PET/MRI findings allowed patients to be directed either to prostatectomy or MRI-guided radiotherapy, and thus avoiding radicaltreatment in 22.6% of patients.
Collapse
|
9
|
Xie J, Li B, Min X, Zhang P, Fan C, Li Q, Wang L. Prediction of Pathological Upgrading at Radical Prostatectomy in Prostate Cancer Eligible for Active Surveillance: A Texture Features and Machine Learning-Based Analysis of Apparent Diffusion Coefficient Maps. Front Oncol 2021; 10:604266. [PMID: 33614487 PMCID: PMC7890009 DOI: 10.3389/fonc.2020.604266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/18/2020] [Indexed: 12/09/2022] Open
Abstract
Objective To evaluate a combination of texture features and machine learning-based analysis of apparent diffusion coefficient (ADC) maps for the prediction of Grade Group (GG) upgrading in Gleason score (GS) ≤6 prostate cancer (PCa) (GG1) and GS 3 + 4 PCa (GG2). Materials and methods Fifty-nine patients who were biopsy-proven to have GG1 or GG2 and underwent MRI examination with the same MRI scanner prior to transrectal ultrasound (TRUS)-guided systemic biopsy were included. All these patients received radical prostatectomy to confirm the final GG. Patients were divided into training cohort and test cohort. 94 texture features were extracted from ADC maps for each patient. The independent sample t-test or Mann−Whitney U test was used to identify the texture features with statistically significant differences between GG upgrading group and GG non-upgrading group. Texture features of GG1 and GG2 were compared based on the final pathology of radical prostatectomy. We used the least absolute shrinkage and selection operator (LASSO) algorithm to filter features. Four supervised machine learning methods were employed. The prediction performance of each model was evaluated by area under the receiver operating characteristic curve (AUC). The statistical comparison between AUCs was performed. Results Six texture features were selected for the machine learning models building. These texture features were significantly different between GG upgrading group and GG non-upgrading group (P < 0.05). The six features had no significant difference between GG1 and GG2 based on the final pathology of radical prostatectomy. All machine learning methods had satisfactory predictive efficacy. The diagnostic performance of nearest neighbor algorithm (NNA) and support vector machine (SVM) was better than random forests (RF) in the training cohort. The AUC, sensitivity, and specificity of NNA were 0.872 (95% CI: 0.750−0.994), 0.967, and 0.778, respectively. The AUC, sensitivity, and specificity of SVM were 0.861 (95%CI: 0.732−0.991), 1.000, and 0.722, respectively. There had no significant difference between AUCs in the test cohort. Conclusion A combination of texture features and machine learning-based analysis of ADC maps could predict PCa GG upgrading from biopsy to radical prostatectomy non-invasively with satisfactory predictive efficacy.
Collapse
Affiliation(s)
- Jinke Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Basen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangde Min
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peipei Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chanyuan Fan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiubai Li
- Department of Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Liang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Thomas JV, Abou Elkassem AM, Ganeshan B, Smith AD. MR Imaging Texture Analysis in the Abdomen and Pelvis. Magn Reson Imaging Clin N Am 2020; 28:447-456. [PMID: 32624161 DOI: 10.1016/j.mric.2020.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Add "which is a" before "distribution"? Texture analysis (TA) is a form of radiomics that refers to quantitative measurements of the histogram, distribution and/or relationship of pixel intensities or gray scales within a region of interest on an image. TA can be applied to MR images of the abdomen and pelvis, with the main strength quantitative analysis of pixel intensities and heterogeneity rather than subjective/qualitative analysis. There are multiple limitations of MRTA. Despite these limitations, there is a growing body of literature supporting MRTA. This review discusses application of MRTA to the abdomen and pelvis.
Collapse
Affiliation(s)
- John V Thomas
- Body Imaging Section, Department of Radiology, University of Alabama at Birmingham, N355 Jefferson Tower, 619 19th Street South, Birmingham, AL 35249-6830, USA.
| | - Asser M Abou Elkassem
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street South, Birmingham, AL 35249-6830, USA
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, University College of London, 5th Floor, Tower, 235 Euston Road, London NW1 2BU, UK
| | - Andrew D Smith
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street South, Birmingham, AL 35249-6830, USA
| |
Collapse
|
11
|
Stanzione A, Gambardella M, Cuocolo R, Ponsiglione A, Romeo V, Imbriaco M. Prostate MRI radiomics: A systematic review and radiomic quality score assessment. Eur J Radiol 2020; 129:109095. [PMID: 32531722 DOI: 10.1016/j.ejrad.2020.109095] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiomics have the potential to further increase the value of MRI in prostate cancer management. However, implementation in clinical practice is still far and concerns have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed to systematically review the literature to assess the quality of prostate MRI radiomic studies using the radiomics quality score (RQS). METHODS Multiple medical literature archives (PubMed, Web of Science and EMBASE) were searched to retrieve original investigations focused on prostate MRI radiomic approaches up to the end of June 2019. Three researchers independently assessed each paper using the RQS. Data from the most experienced researcher were used for descriptive analysis. Inter-rater reproducibility was assessed using the intraclass correlation coefficient (ICC) on the total RQS score. RESULTS 73 studies were included in the analysis. Overall, the average RQS total score was 7.93 ± 5.13 on a maximum of 36 points, with a final average percentage of 23 ± 13%. Among the most critical items, the lack of feature robustness testing strategies and external validation datasets. The ICC resulted poor to moderate, with an average value of 0.57 and 95% Confidence Intervals between 0.44 and 0.69. CONCLUSIONS Current studies on prostate MRI radiomics still lack the quality required to allow their introduction in clinical practice.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Michele Gambardella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Renato Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
12
|
MRI texture features differentiate clinicopathological characteristics of cervical carcinoma. Eur Radiol 2020; 30:5384-5391. [PMID: 32382845 DOI: 10.1007/s00330-020-06913-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To evaluate MRI texture analysis in differentiating clinicopathological characteristics of cervical carcinoma (CC). METHODS Patients with newly diagnosed CC who underwent pre-treatment MRI were retrospectively reviewed. Texture analysis was performed using commercial software (TexRAD). Largest single-slice ROIs were manually drawn around the tumour on T2-weighted (T2W) images, apparent diffusion coefficient (ADC) maps and contrast-enhanced T1-weighted (T1c) images. First-order texture features were calculated and compared among histological subtypes, tumour grades, FIGO stages and nodal status using the Mann-Whitney U test. Feature selection was achieved by elastic net. Selected features from different sequences were used to build the multivariable support vector machine (SVM) models and the performances were assessed by ROC curves and AUC. RESULTS Ninety-five patients with FIGO stage IB~IVB were evaluated. A number of texture features from multiple sequences were significantly different among all the clinicopathological subgroups (p < 0.05). Texture features from different sequences were selected to build the SVM models. The AUCs of SVM models for discriminating histological subtypes, tumour grades, FIGO stages and nodal status were 0.841, 0.850, 0.898 and 0.879, respectively. CONCLUSIONS Texture features derived from multiple sequences were helpful in differentiating the clinicopathological signatures of CC. The SVM models with selected features from different sequences offered excellent diagnostic discrimination of the tumour characteristics in CC. KEY POINTS • First-order texture features are able to differentiate clinicopathological signatures of cervical carcinoma. • Combined texture features from different sequences can offer excellent diagnostic discrimination of the tumour characteristics in cervical carcinoma.
Collapse
|