1
|
Mandal D, Akhtar N, Shafi S, Gupta J. Phytoestrogens and Sirtuin Activation for Renal Protection: A Review of Potential Therapeutic Strategies. PLANTA MEDICA 2025; 91:146-166. [PMID: 39626791 DOI: 10.1055/a-2464-4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Significant health and socio-economic challenges are posed by renal diseases, leading to millions of deaths annually. The costs associated with treating and caring for patients with renal diseases are considerable. Current therapies rely on synthetic drugs that often come with side effects. However, phytoestrogens, natural compounds, are emerging as promising renal protective agents. They offer a relatively safe, effective, and cost-efficient alternative to existing therapies. Phytoestrogens, being structurally similar to 17-β-estradiol, bind to estrogen receptors and produce both beneficial and, in some cases, harmful health effects. The activation of sirtuins has shown promise in mitigating fibrosis and inflammation in renal tissues. Specifically, SIRT1, which is a crucial regulator of metabolic activities, plays a role in protecting against nephrotoxicity, reducing albuminuria, safeguarding podocytes, and lowering reactive oxygen species in diabetic glomerular injury. Numerous studies have highlighted the ability of phytoestrogens to activate sirtuins, strengthen antioxidant defense, and promote mitochondrial biogenesis, playing a vital role in renal protection during kidney injury. These findings support further investigation into the potential role of phytoestrogens in renal protection. This manuscript reviews the potential of phytoestrogens such as resveratrol, genistein, coumestrol, daidzein, and formononetin in regulating sirtuin activity, particularly SIRT1, and thereby providing renal protection. Understanding these mechanisms is crucial for designing effective treatment strategies using naturally occurring phytochemicals against renal diseases.
Collapse
Affiliation(s)
- Debojyoti Mandal
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| | - Sana Shafi
- Molecular Medicine & Pathology (MMP) Matauranga Hauora, Faculty of Medical and Health Sciences Waipapa Taumata Rau, University of Auckland, Aotearoa, New Zealand
| | - Jeena Gupta
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| |
Collapse
|
2
|
Carollo C, Sorce A, Cirafici E, Mulè G, Caimi G. Sirtuins and Resveratrol in Cardiorenal Diseases: A Narrative Review of Mechanisms and Therapeutic Potential. Nutrients 2025; 17:1212. [PMID: 40218970 PMCID: PMC11990745 DOI: 10.3390/nu17071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Aging is a very complex process, and it has been linked with Sirtuins. Sirtuin enzymes are a family of deacetylases that are related to caloric restriction and aging by modulating energy metabolism, genomic stability, and stress resistance. Up to now, seven sirtuins have been recognized. This narrative review aimed to analyze the literature produced between January 2005 and March 2025 to evaluate the role of sirtuins in chronic kidney disease and, as heart and kidney diseases are strictly interrelated, to explore their role in heart diseases and cardio-renal cross-talk. A reciprocal relationship between CKD and aging seems to exist since CKD may contribute to premature biological aging of different organ systems. SIRTs are involved in the pathophysiology of renal diseases; their activation can delay the progression of several renal diseases. Notably, an increasing number of studies linked SIRTs with different CVDs. SIRTs affect the production of mitochondrial reactive oxygen species (ROS) by modulating mitochondrial function. The imbalance of SIRT levels may increase the vulnerability to CVDs. SIRTs are involved in the pathophysiological mechanisms of HFpEF (heart failure with preserved ejection fraction) through different signaling pathways. Fibrosis is the linkage mechanism between the heart and kidney in the development of cardio-renal diseases. Current studies on sirtuins, resveratrol, and cardiorenal disease highlight their potential therapeutic benefits in regulating blood pressure, kidney function, lipid profiles, and inflammation, making them a promising area of investigation for improving cardiovascular and renal health outcomes. However, significant gaps remain. The limited availability of highly selective and potent sirtuin modulators hampers their clinical translation, as most existing compounds exhibit poor bioavailability and suboptimal pharmacokinetic properties.
Collapse
Affiliation(s)
- Caterina Carollo
- Department of Health Promotion, Mother and Child Care, Internal and Specialistic Medicine, University of Palermo, 90127 Palermo, Italy (E.C.); (G.M.)
| | | | | | | | | |
Collapse
|
3
|
Fedorczak A, Lewiński A, Stawerska R. Sirtuin 1 serum concentration in healthy children - dependence on sex, age, stage of puberty, body weight and diet. Front Endocrinol (Lausanne) 2024; 15:1356612. [PMID: 38529393 PMCID: PMC10961438 DOI: 10.3389/fendo.2024.1356612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Sirtuin 1 (SIRT1) is known to be involved in sensing cellular energy levels and regulating energy metabolism. This study aimed to evaluate fasting serum SIRT1 levels in healthy children, and to analyse the influence of age, sex, puberty, body weight, height, and diet on its concentration. Methods 47 healthy children aged 4-14 with weight and height within normal range and no chronic disease were included into the study. Fasting serum SIRT1 concentrations were estimated by Enzyme Linked Immunosorbent Assay (ELISA). Results Results showed that serum SIRT1 concentrations in healthy children did not differ with respect to sex, age, height, weight and puberty. Whereas, it appeared that a higher frequency of fruits, vegetables and dairy products consumption was associated with an increase in serum SIRT1 levels. Discussion Studying SIRT1 in the context of children's health may have implications for a broader understanding of growth processes, pubertal development, metabolic disorders and nutrition.
Collapse
Affiliation(s)
- Anna Fedorczak
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
- Department of Paediatric Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Renata Stawerska
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
- Department of Paediatric Endocrinology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Khacha-ananda S, Intayoung U, Wunnapuk K, Kohsuwan K, Srisai P, Sapbamrer R. Urinary Levels of Sirtuin-1, π-Glutathione S-Transferase, and Mitochondrial DNA in Maize Farmer Occupationally Exposed to Herbicide. TOXICS 2022; 10:toxics10050252. [PMID: 35622665 PMCID: PMC9145378 DOI: 10.3390/toxics10050252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022]
Abstract
Epidemiologic studies have suggested an association between agrochemical exposure and risk of renal injury. Farmers face great risks to developing adverse effects. The most appropriate biomarker related to renal injury needs to be developed to encounter earlier detection. We aim to study the association between early renal biomarker and occupational herbicide exposure in maize farmers, Thailand. Sixty-four farmers were recruited and interviewed concerning demographic data, herbicide usage, and protective behavior. Two spot urines before (pre-work task) and after (post-work task) herbicide spraying were collected. To estimate the intensity of exposure, the cumulative herbicide exposure intensity index (cumulative EII) was also calculated from activities on the farm, type of personal protective equipment (PPE) use, as well as duration and frequency of exposure. Four candidate renal biomarkers including π-GST, sirtuin-1, mitochondrial DNA (mtDNA) were measured. Most subjects were male and mostly sprayed three herbicides including glyphosate-based herbicides (GBH), paraquat, and 2,4-dichlorophenoxyacetic acid (2,4-D). A type of activity in farm was mixing and spraying herbicide. Our finding demonstrated no statistical significance of all biomarker levels between pre- and post-work task urine. To compare between single and cocktail use of herbicide, there was no statistical difference in all biomarker levels between pre- and post-work task urine. However, the urinary mtDNA seems to be increased in post-work task urine. Moreover, the cumulative EII was strongly associated with change in mtDNA content in both ND-1 and COX-3 gene. The possibility of urinary mtDNA as a valuable biomarker was promising as a noninvasive benchmark for early detection of the risk of developing renal injury from herbicide exposure.
Collapse
Affiliation(s)
- Supakit Khacha-ananda
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sri Phum, Muang, Chiang Mai 50200, Thailand; (U.I.); (K.W.); (K.K.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, 239, Huay Kaew Road, Muang, Chiang Mai 50200, Thailand
- Correspondence:
| | - Unchisa Intayoung
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sri Phum, Muang, Chiang Mai 50200, Thailand; (U.I.); (K.W.); (K.K.)
| | - Klintean Wunnapuk
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sri Phum, Muang, Chiang Mai 50200, Thailand; (U.I.); (K.W.); (K.K.)
| | - Kanyapak Kohsuwan
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthawarorot Road, Sri Phum, Muang, Chiang Mai 50200, Thailand; (U.I.); (K.W.); (K.K.)
| | | | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|