1
|
Klymiuk MC, Balz N, Elashry MI, Wenisch S, Arnhold S. Effect of storage conditions on the quality of equine and canine mesenchymal stem cell derived nanoparticles including extracellular vesicles for research and therapy. DISCOVER NANO 2024; 19:80. [PMID: 38700790 PMCID: PMC11068712 DOI: 10.1186/s11671-024-04026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Nanoparticles including extracellular vesicles derived from mesenchymal stem cells are of increasing interest for research and clinical use in regenerative medicine. Extracellular vesicles (EVs), including also previously named exosomes, provide a promising cell-free tool for therapeutic applications, which is probably a safer approach to achieve sufficient healing. Storage of EVs may be necessary for clinical applications as well as for further experiments, as the preparation is sometimes laborious and larger quantities tend to be gained. For this purpose, nanoparticles were obtained from mesenchymal stem cells from adipose tissue (AdMSC) of horses and dogs. The EVs were then stored for 7 days under different conditions (- 20 °C, 4 °C, 37 °C) and with the addition of various additives (5 mM EDTA, 25-250 µM trehalose). Afterwards, the size and number of EVs was determined using the nano tracking analyzing method. With our investigations, we were able to show that storage of EVs for up to 7 days at 4 °C does not require the addition of supplements. For the other storage conditions, in particular freezing and storage at room temperature, the addition of EDTA was found to be suitable for preventing aggregation of the particles. Contrary to previous publications, trehalose seems not to be a suitable cryoprotectant for AdMSC-derived EVs. The data are useful for processing and storage of isolated EVs for further experiments or clinical approaches in veterinary medicine.
Collapse
Affiliation(s)
- Michele Christian Klymiuk
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany.
| | - Natalie Balz
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Mohamed I Elashry
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Stefan Arnhold
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| |
Collapse
|
2
|
Ivanova Z, Petrova V, Grigorova N, Vachkova E. Identification of the Reference Genes for Relative qRT-PCR Assay in Two Experimental Models of Rabbit and Horse Subcutaneous ASCs. Int J Mol Sci 2024; 25:2292. [PMID: 38396967 PMCID: PMC10889259 DOI: 10.3390/ijms25042292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Obtaining accurate and reliable gene expression results in real-time RT-PCR (qRT-PCR) data analysis requires appropriate normalization by carefully selected reference genes, either a single or a combination of multiple housekeeping genes (HKGs). The optimal reference gene/s for normalization should demonstrate stable expression across varying conditions to diminish potential influences on the results. Despite the extensive database available, research data are lacking regarding the most appropriate HKGs for qRT-PCR data analysis in rabbit and horse adipose-derived stem cells (ASCs). Therefore, in our study, we comprehensively assessed and compared the suitability of some widely used HKGs, employing RefFinder and NormFinder, two extensively acknowledged algorithms for robust data interpretation. The rabbit and horse ASCs were obtained from subcutaneous stromal vascular fraction. ASCs were induced into tri-lineage differentiation, followed by the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) treatment of the adipose-differentiated rabbit ASCs, while horse experimental groups were formed based on adipogenic, osteogenic, and chondrogenic differentiation. At the end of the experiment, the total mRNA was obtained and used for the gene expression evaluation of the observed factors. According to our findings, glyceraldehyde 3-phosphate dehydrogenase was identified as the most appropriate endogenous control gene for rabbit ASCs, while hypoxanthine phosphoribosyltransferase was deemed most suitable for horse ASCs. The obtained results underscore that these housekeeping genes exhibit robust stability across diverse experimental conditions, remaining unaltered by the treatments. In conclusion, the current research can serve as a valuable baseline reference for experiments evaluating gene expression in rabbit and horse ASCs. It highlights the critical consideration of housekeeping gene abundance and stability in qPCR experiments, emphasizing the need for an individualized approach tailored to the specific requirements of the study.
Collapse
Affiliation(s)
- Zhenya Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (V.P.); (N.G.); (E.V.)
| | | | | | | |
Collapse
|
3
|
Ferreira-Baptista C, Ferreira R, Fernandes MH, Gomes PS, Colaço B. Influence of the Anatomical Site on Adipose Tissue-Derived Stromal Cells' Biological Profile and Osteogenic Potential in Companion Animals. Vet Sci 2023; 10:673. [PMID: 38133224 PMCID: PMC10747344 DOI: 10.3390/vetsci10120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose tissue-derived stromal cells (ADSCs) have generated considerable interest in the field of veterinary medicine, particularly for their potential in therapeutic strategies focused on bone regeneration. These cells possess unique biological characteristics, including their regenerative capacity and their ability to produce bioactive molecules. However, it is crucial to recognize that the characteristics of ADSCs can vary depending on the animal species and the site from which they are derived, such as the subcutaneous and visceral regions (SCAT and VAT, respectively). Thus, the present work aimed to comprehensively review the different traits of ADSCs isolated from diverse anatomical sites in companion animals, i.e., dogs, cats, and horses, in terms of immunophenotype, morphology, proliferation, and osteogenic differentiation potential. The findings indicate that the immunophenotype, proliferation, and osteogenic potential of ADSCs differ according to tissue origin and species. Generally, the proliferation rate is higher in VAT-derived ADSCs in dogs and horses, whereas in cats, the proliferation rate appears to be similar in both cells isolated from SCAT and VAT regions. In terms of osteogenic differentiation potential, VAT-derived ADSCs demonstrate the highest capability in cats, whereas SCAT-derived ADSCs exhibit superior potential in horses. Interestingly, in dogs, VAT-derived cells appear to have greater potential than those isolated from SCAT. Within the VAT, ADSCs derived from the falciform ligament and omentum show increased osteogenic potential, compared to cells isolated from other anatomical locations. Consequently, considering these disparities, optimizing isolation protocols becomes pivotal, tailoring them to the specific target species and therapeutic aims, and judiciously selecting the anatomical site for ADSC isolation. This approach holds promise to enhance the efficacy of ADSCs-based bone regenerative therapies.
Collapse
Affiliation(s)
- Carla Ferreira-Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rita Ferreira
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Pedro Sousa Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- CECAV—Animal and Veterinary Research Centre UTAD, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Li H, Xiong S, Masieri FF, Monika S, Lethaus B, Savkovic V. Mesenchymal Stem Cells Isolated from Equine Hair Follicles Using a Method of Air-Liquid Interface. Stem Cell Rev Rep 2023; 19:2943-2956. [PMID: 37733199 PMCID: PMC10661790 DOI: 10.1007/s12015-023-10619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
Equine mesenchymal stem cells (MSC) of various origins have been identified in horses, including MSCs from the bone marrow and adipose tissue. However, these stem cell sources are highly invasive in sampling, which thereby limits their clinical application in equine veterinary medicine. This study presents a novel method using an air-liquid interface to isolate stem cells from the hair follicle outer root sheath of the equine forehead skin. These stem cells cultured herewith showed high proliferation and asumed MSC phenotype by expressing MSC positive biomarkers (CD29, CD44 CD90) while not expressing negative markers (CD14, CD34 and CD45). They were capable of differentiating towards chondrogenic, osteogenic and adipogenic lineages, which was comparable with MSCs from adipose tissue. Due to their proliferative phenotype in vitro, MSC-like profile and differentiation capacities, we named them equine mesenchymal stem cells from the hair follicle outer root sheath (eMSCORS). eMSCORS present a promising alternative stem cell source for the equine veterinary medicine.
Collapse
Affiliation(s)
- Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Shiwen Xiong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | | | - Seltenhammer Monika
- Institute of Livestock Sciences (NUWI), University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33/II, A-1180, Vienna, Austria
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Vuk Savkovic
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
5
|
Petrova V, Yonkova P, Simeonova G, Vachkova E. Horse serum potentiates cellular viability and improves indomethacin-induced adipogenesis in equine subcutaneous adipose-derived stem cells (ASCs). Int J Vet Sci Med 2023; 11:94-105. [PMID: 37655053 PMCID: PMC10467519 DOI: 10.1080/23144599.2023.2248805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 08/05/2023] [Indexed: 09/02/2023] Open
Abstract
Subcutaneous fat tissue is an accessible and abundant source of multipotent stem cells for cell therapy in regenerative medicine. Successful trilineage differentiation is required to define the stemness features of the obtained mesenchymal cells, and adipogenesis is a part of it. Since indomethacin is bound to serum albumin, replacing foetal bovine serum (FBS) with horse serum (HS) in adipogenic induction protocols would suppress its cytotoxic effect and reveal a better adipogenic potential in equine MSCs. The equine subcutaneous adipose-derived stem cells (ASCs) were separately induced in adipogenesis by three different concentrations of 3-isobutyl-1-methylxanthine, IBMX (0.5 mM; 0.25 mM and 0.1 mM) and indomethacin (0.1 mM; 0.05 mM and 0.02 mM) for 48 h. In contrast to the IBMX, indomethacin in all concentrations caused dramatic cellular detachment. Further, the same induction concentrations were used in FBS and HS conditions for adipogenic induction. The MTT assay revealed that the culture media supplemented with HS raised cellular vitality by about 35% compared to those cultured in FBS. Based on those results, an adipogenic cocktail containing indomethacin (0.05 mM) and IBMX (0.5 mM), supplemented with HS and FBS, respectively, was applied for 18 days. The adiponectin gene expression was significantly up-regulated in HS-supplemented media since established changes in PPAR-gamma were insignificant. The tri-lineage differentiation was successful, and a cross-sectional area of adipocytes was performed. The albumin concentration was higher in HS than in FBS. In conclusion, our study revealed that HS is an appropriate supplement in induced adipogenesis since it probably suppresses the indomethacin-related cytotoxic effect and increases adipogenic ability in equine subcutaneous ASCs.
Collapse
Affiliation(s)
- Valeria Petrova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Penka Yonkova
- Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Galina Simeonova
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
6
|
Cacciamali A, Pascucci L, Villa R, Dotti S. Engineered nanoparticles toxicity on adipose tissue derived mesenchymal stem cells: A preliminary investigation. Res Vet Sci 2022; 152:134-149. [PMID: 35969916 DOI: 10.1016/j.rvsc.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022]
Abstract
Nanoscience and nanotechnologies have recently gained importance in several fields, such as industry and medicine. A big issue of the increasing application of nanomaterials is the poor literature regarding their potential toxicity in humans and animals. Recently, adult stem cells have been proposed as putative targets of nanoparticles (NPs). This study aims to investigate the effects of zerovalent-metallic NPs on isolated and amplified equine Adipose tissue derived Mesenchymal Stem Cells (eAdMSCs). Cells were treated with Cobalt (Co-), Iron (Fe-), and Nickel (Ni-) nanoparticles (NPs) at different concentrations and were characterized for the cytotoxic and genotoxic effects of exposure. Treatment with NPs resulted in reduced cell viability and proliferative capability in comparison with untreated cells. However, this did not influence eAdMSCs potency, as treated cells were able to differentiate towards the adipogenic and osteogenic lineages. Ni- and Fe-NPs showed cytoplasmic localization, while Co-NPs entered the nucleus and mitochondria, suggesting a potential genotoxic activity. Regarding p53 expression, it was enhanced in the first 48 h after treatments, with a drastic reduction of expression within 72 h. Higher p53 expression was reported in the case of Co-NP treatment, suggesting the tumorigenic potential of these NPs. Telomerase activity was enhanced by Fe- and Ni-NP treatments in a concentration- and time-dependent way. This was not true for Co-NP treated samples, suggesting a reduced replicative capacity of eAdMSCs upon Co-NP exposure. The present study is a preliminary investigation of the influence exerted by NPs on eAdMSC physiological activity in terms of cytotoxic and genotoxic effects. The present results revealed eAdMSC physiology to be strongly influenced by NPs in a dose-, time- and NP-dependent way.
Collapse
Affiliation(s)
- Andrea Cacciamali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| | - Luisa Pascucci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy.
| | - Riccardo Villa
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| | - Silvia Dotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| |
Collapse
|
7
|
Elashry MI, Baulig N, Wagner AS, Klymiuk MC, Kruppke B, Hanke T, Wenisch S, Arnhold S. Combined macromolecule biomaterials together with fluid shear stress promote the osteogenic differentiation capacity of equine adipose-derived mesenchymal stem cells. Stem Cell Res Ther 2021; 12:116. [PMID: 33579348 PMCID: PMC7879632 DOI: 10.1186/s13287-021-02146-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Combination of mesenchymal stem cells (MSCs) and biomaterials is a rapidly growing approach in regenerative medicine particularly for chronic degenerative disorders including osteoarthritis and osteoporosis. The present study examined the effect of biomaterial scaffolds on equine adipose-derived MSC morphology, viability, adherence, migration, and osteogenic differentiation. Methods MSCs were cultivated in conjunction with collagen CultiSpher-S Microcarrier (MC), nanocomposite xerogels B30 and combined B30 with strontium (B30Str) biomaterials in osteogenic differentiation medium either under static or mechanical fluid shear stress (FSS) culture conditions. The data were generated by histological means, live cell imaging, cell viability, adherence and migration assays, semi-quantification of alkaline phosphatase (ALP) activity, and quantification of the osteogenic markers runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) expression. Results The data revealed that combined mechanical FSS with MC but not B30 enhanced MSC viability and promoted their migration. Combined osteogenic medium with MC, B30, and B30Str increased ALP activity compared to cultivation in basal medium. Osteogenic induction with MC, B30, and B30Str resulted in diffused matrix mineralization. The combined osteogenic induction with biomaterials under mechanical FSS increased Runx2 protein expression either in comparison to those cells cultivated in BM or those cells induced under static culture. Runx2 and ALP expression was upregulated following combined osteogenic differentiation together with B30 and B30Str regardless of static or FSS culture. Conclusions Taken together, the data revealed that FSS in conjunction with biomaterials promoted osteogenic differentiation of MSCs. This combination may be considered as a marked improvement for clinical applications to cure bone defects. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02146-7.
Collapse
Affiliation(s)
- Mohamed I Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392, Giessen, Germany.
| | - Nadine Baulig
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392, Giessen, Germany
| | - Alena-Svenja Wagner
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392, Giessen, Germany.,Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, 35392, Giessen, Germany
| | - Michele C Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392, Giessen, Germany
| | - Benjamin Kruppke
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Thomas Hanke
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392, Giessen, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392, Giessen, Germany
| |
Collapse
|
8
|
Arnhold S, Elashry MI, Klymiuk MC, Geburek F. Investigation of stemness and multipotency of equine adipose-derived mesenchymal stem cells (ASCs) from different fat sources in comparison with lipoma. Stem Cell Res Ther 2019; 10:309. [PMID: 31640774 PMCID: PMC6805636 DOI: 10.1186/s13287-019-1429-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/25/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Adipose tissue-derived mesenchymal stem cells (ASCs) offer a promising cell source for therapeutic applications in musculoskeletal disorders. The appropriate selection of ASCs from various fat depots for cell-based therapy is challenging. The present study aims to compare stemness and multipotency of ASCs derived from retroperitoneal (RP), subcutaneous (SC), and lipoma (LP) fat to assess their usefulness for clinical application. METHODS Equine ASCs from the three fat tissue sources were isolated and characterized. The cell viability, proliferation, and self-renewal were evaluated using MTT, sulforhodamine B, and colony forming unit (CFU) assays. Stem cell relative marker CD44, CD90, and CD105 and tumor marker CA9 and osteopontin (OPN) expression were quantified using RT-qPCR. Multipotency of ASCs for adipogenic, osteogenic, and chondrogenic differentiation was examined by quantifying Oil Red O and Alizarin Red S staining, alkaline phosphatase activity (ALP), and expression of differentiation relative markers. All data were statistically analyzed using ANOVA. RESULTS RP fat-derived ASCs showed a higher cell proliferation rate compared to SC and LP derived cells. In contrast, ASCs from lipoma displayed a lower proliferation rate and impaired CFU capacities. The expression of CD44, CD90, and CD105 was upregulated in RP and SC derived cells but not in LP cells. RP fat-derived cells displayed a higher adipogenic potential compared to SC and LP cells. Although ASCs from all fat sources showed enhanced ALP activity following osteogenic differentiation, SC fat-derived cells revealed upregulated ALP and bone morphogenetic protein-2 expression together with a higher calcium deposition. We found an enhanced chondrogenic potency of RP and SC fat-derived cells as shown by Alcian blue staining and upregulation of aggrecan (Aggre), cartilage oligomeric matrix protein precursor (COMP), and collagen 2a1 (Col2a1) expression compared to LP. The expression of OPN and CA9 was exclusively upregulated in the ASCs of LP. CONCLUSIONS The results provide evidence of variation in ASC performance not only between normal fat depots but also compared to LP cells which suggest a different molecular regulation controlling the cell fate. These data provided are useful when considering a source for cell replacement therapy in equine veterinary medicine.
Collapse
Affiliation(s)
- Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392 Giessen, Germany
| | - Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392 Giessen, Germany
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, 35516 Egypt
| | - Michele C. Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392 Giessen, Germany
| | - Florian Geburek
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
9
|
Rink BE, Kuhl J, Esteves CL, French HM, Watson E, Aurich C, Donadeu FX. Reproductive stage and sex steroid hormone levels influence the expression of mesenchymal stromal cell (MSC) markers in the equine endometrium. Theriogenology 2018; 116:34-40. [PMID: 29775846 DOI: 10.1016/j.theriogenology.2018.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/25/2023]
Abstract
Mesenchymal stem or stromal cells (MSCs) play key roles in tissue homeostasis. In the cyclic equine endometrium, this may be regulated by changes in serum concentrations of sex steroid hormones. This study was designed to investigate the changes in endometrial expression of MSC markers during reproductive cycles in mares and the influence of sex steroid hormones on endometrial MSC proliferation in vitro. Endometrial biopsies were collected from pony mares at different reproductive stages (estrus; day 5 and 13 after ovulation; seasonal anestrus; 20 h and 7days post-partum; n = 5 per stage) and were analyzed by RT-qPCR. MSC (CD29, CD44, CD73, CD90, CD105) and perivascular (CD146, NG2) markers were present in all samples irrespective of reproductive stage. Transcript levels of most markers were present at lowest levels on day 5 after ovulation and at 20 h post-partum. MSCs isolated from endometrial tissue (n = 6 mares) were cultured in the presence of progesterone (0.01-100 μM) and estradiol 17β (0.1-1 μM), and cell proliferation was analyzed using alamarBlue® assay. Relative to cells incubated in steroid-depleted media, both progesterone and estradiol 17β moderately increased cell proliferation (1.1- and 1.2-fold, respectively) independently of the concentration used. In conclusion, our results suggest that levels of MSC markers in equine endometrium dynamically change across reproductive cycles and that MSC populations are in part regulated by sex steroids.
Collapse
Affiliation(s)
- B Elisabeth Rink
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies; Artificial Inseminaton and Embryo Transfer, Department for Companion Animals and Horses, Vetmeduni Vienna, Vienna, Austria; The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Juliane Kuhl
- Artificial Inseminaton and Embryo Transfer, Department for Companion Animals and Horses, Vetmeduni Vienna, Vienna, Austria
| | | | - Hilari M French
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | - Elaine Watson
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | - Christine Aurich
- Artificial Inseminaton and Embryo Transfer, Department for Companion Animals and Horses, Vetmeduni Vienna, Vienna, Austria.
| | | |
Collapse
|
10
|
Elashry MI, Baulig N, Heimann M, Bernhardt C, Wenisch S, Arnhold S. Osteogenic differentiation of equine adipose tissue derived mesenchymal stem cells using CaCl 2. Res Vet Sci 2018; 117:45-53. [PMID: 29175012 DOI: 10.1016/j.rvsc.2017.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 11/10/2017] [Accepted: 11/18/2017] [Indexed: 12/31/2022]
|
11
|
MEM α Promotes Cell Proliferation and Expression of Bone Marrow Derived Equine Mesenchymal Stem Cell Gene Markers but Depresses Differentiation Gene Markers. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2016.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Comparison of Immunomodulation Properties of Porcine Mesenchymal Stromal/Stem Cells Derived from the Bone Marrow, Adipose Tissue, and Dermal Skin Tissue. Stem Cells Int 2015; 2016:9581350. [PMID: 26798368 PMCID: PMC4699062 DOI: 10.1155/2016/9581350] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) demonstrate immunomodulation capacity that has been implicated in the reduction of graft-versus-host disease. Accordingly, we herein investigated the capacity of MSCs derived from several tissue sources to modulate both proinflammatory (interferon [IFN] γ and tumor necrosis factor [TNF] α) and immunosuppressive cytokines (transforming growth factor [TGF] β and interleukin [IL] 10) employing xenogeneic human MSC-mixed lymphocyte reaction (MLR) test. Bone marrow-derived MSCs showed higher self-renewal capacity with relatively slow proliferation rate in contrast to adipose-derived MSCs which displayed higher proliferation rate. Except for the lipoprotein gene, there were no marked changes in osteogenesis- and adipogenesis-related genes following in vitro differentiation; however, the histological marker analysis revealed that adipose MSCs could be differentiated into both adipose and bone tissue. TGFβ and IL10 were detected in adipose MSCs and bone marrow MSCs, respectively. However, skin-derived MSCs expressed both IFNγ and IL10, which may render them sensitive to immunomodulation. The xenogeneic human MLR test revealed that MSCs had a partial immunomodulation capacity, as proliferation of activated and resting peripheral blood mononuclear cells was not affected, but this did not differ among MSC sources. MSCs were not tumorigenic when introduced into immunodeficient mice. We concluded that the characteristics of MSCs are tissue source-dependent and their in vivo application requires more in-depth investigation regarding their precise immunomodulation capacities.
Collapse
|
13
|
Phenotypic and immunomodulatory properties of equine cord blood-derived mesenchymal stromal cells. PLoS One 2015; 10:e0122954. [PMID: 25902064 PMCID: PMC4406608 DOI: 10.1371/journal.pone.0122954] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/16/2015] [Indexed: 12/11/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) have attracted interest for their cytotherapeutic potential, partly due to their immunomodulatory abilities. The aim of this study was to test the robustness of our equine cord blood (CB) MSC isolation protocol, to characterize the CB-MSC before and after cryopreservation, and to evaluate their immunosuppressive phenotype. We hypothesized that MSC can be consistently isolated from equine CB, have unique and reproducible marker expression and in vitro suppress lymphoproliferation. Preliminary investigation of constitutive cytoplasmic Toll-like receptor (TLR) 3 and 4 expression was also preformed due to their possible association with anti- or pro-inflammatory MSC phenotypes, respectively. Surface markers were assessed for antigen and mRNA expression by flow cytometry and quantitative polymerase chain reaction (qPCR). Immunomodulatory properties were evaluated in mixed lymphocyte reaction assays, and TLR3 and TLR4 expression were measured by qPCR and immunocytochemistry (ICC). CB-MSC were isolated from each off nine cord blood samples. CB-MSC highly expressed CD29, CD44, CD90, and lacked or had low expression of major histocompatibility complex (MHC) class I, MHC-II, CD4, CD8, CD11a/18 and CD73 before and after cryopreservation. CB-MSC suppressed in vitro lymphoproliferation and constitutively expressed TLR4. Our findings confirmed CB as a reliable MSC source, provides an association of surface marker phenotype and mRNA expression and suggest anti-inflammatory properties of CB-MSC. The relationship between TLRs and lymphocyte function warrants further investigation.
Collapse
|
14
|
Whitworth DJ, Banks TA. Stem cell therapies for treating osteoarthritis: prescient or premature? Vet J 2014; 202:416-24. [PMID: 25457267 DOI: 10.1016/j.tvjl.2014.09.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 01/23/2023]
Abstract
There has been unprecedented interest in recent years in the use of stem cells as therapy for an array of diseases in companion animals. Stem cells have already been deployed therapeutically in a number of clinical settings, in particular the use of mesenchymal stem cells to treat osteoarthritis in horses and dogs. However, an assessment of the scientific literature highlights a marked disparity between the purported benefits of stem cell therapies and their proven abilities as defined by rigorously controlled scientific studies. Although preliminary data generated from clinical trials in human patients are encouraging, therapies currently available to treat animals are supported by very limited clinical evidence, and the commercialisation of these treatments may be premature. This review introduces the three main types of stem cells relevant to veterinary applications, namely, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells, and draws together research findings from in vitro and in vivo studies to give an overview of current stem cell therapies for the treatment of osteoarthritis in animals. Recent advances in tissue engineering, which is proposed as the future direction of stem cell-based therapy for osteoarthritis, are also discussed.
Collapse
Affiliation(s)
- Deanne J Whitworth
- School of Veterinary Science, University of Queensland, Gatton, Queensland 4343, Australia.
| | - Tania A Banks
- School of Veterinary Science, University of Queensland, Gatton, Queensland 4343, Australia
| |
Collapse
|
15
|
Bruno I, Martinez R, Sanchez A, Friddle C, McClure SR. Characterization of Nucleated Cells From Equine Adipose Tissue and Bone Marrow Aspirate Processed for Point-of-Care Use. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Gittel C, Brehm W, Burk J, Juelke H, Staszyk C, Ribitsch I. Isolation of equine multipotent mesenchymal stromal cells by enzymatic tissue digestion or explant technique: comparison of cellular properties. BMC Vet Res 2013; 9:221. [PMID: 24168625 PMCID: PMC4228449 DOI: 10.1186/1746-6148-9-221] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 10/11/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The treatment of tendon lesions with multipotent mesenchymal stromal cells (MSCs) is widely used in equine medicine. Cell sources of MSCs include bone marrow, as well as solid tissues such as adipose tissue. MSCs can be isolated from these solid tissues either by enzymatic digestion or by explant technique. However, the different preparation techniques may potentially influence the properties of the isolated MSCs. Therefore, the aim of this study was to investigate and compare the effects of these two different methods used to isolate MSCs from solid tissues.Equine adipose tissue, tendon and umbilical cord matrix served as solid tissue sources of MSCs with different stiffness and density. Subsequent to tissue harvest, MSCs were isolated either by enzymatic digestion with collagenase or by explant technique. Cell yield, growth, differentiation potential and tendon marker expression were analysed. RESULTS At first passage, the MSC yield was significantly higher in enzymatically digested tissue samples than in explanted tissue samples, despite a shorter period of time in primary culture. Further analysis of cell proliferation, migration and differentiation revealed no significant differences between MSCs isolated by enzymatic digestion and MSCs isolated by explant technique. Interestingly, analysis of gene expression of tendon markers revealed a significantly higher expression level of scleraxis in MSCs isolated by enzymatic digestion. CONCLUSIONS Both isolation techniques are feasible methods for successful isolation of MSCs from solid tissues, with no major effects on cellular proliferation, migration or differentiation characteristics. However, higher MSC yields were achieved in a shorter period of time by collagenase digestion, which is advantageous for the therapeutic use of MSCs. Moreover, based on the higher level of expression of scleraxis in MSCs isolated by enzymatic digestion, these cells might be a better choice when attempting tendon regeneration.
Collapse
Affiliation(s)
- Claudia Gittel
- Large Animal Clinic for Surgery, University of Leipzig, An den Tierkliniken 21, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Calloni R, Viegas GS, Türck P, Bonatto D, Pegas Henriques JA. Mesenchymal stromal cells from unconventional model organisms. Cytotherapy 2013; 16:3-16. [PMID: 24113426 DOI: 10.1016/j.jcyt.2013.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 12/23/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent, plastic, adherent cells able to differentiate into osteoblasts, chondroblasts and adipocytes. MSCs can be isolated from many different body compartments of adult and fetal individuals. The most commonly studied MSCs are isolated from humans, mice and rats. However, studies are also being conducted with the use of MSCs that originate from different model organisms, such as cats, dogs, guinea pigs, ducks, chickens, buffalo, cattle, sheep, goats, horses, rabbits and pigs. MSCs derived from unconventional model organisms all present classic fibroblast-like morphology, the expression of MSC-associated cell surface markers such as CD44, CD73, CD90 and CD105 and the absence of CD34 and CD45. Moreover, these MSCs have the ability to differentiate into osteoblasts, chondroblasts and adipocytes. The MSCs isolated from unconventional model organisms are being studied for their potential to heal different tissue defects and injuries and for the development of scaffold compositions that improve the proliferation and differentiation of MSCs for tissue engineering.
Collapse
Affiliation(s)
- Raquel Calloni
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Gabrihel Stumpf Viegas
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Patrick Türck
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Diego Bonatto
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - João Antonio Pegas Henriques
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| |
Collapse
|
18
|
Schnabel LV, Fortier LA, Wayne McIlwraith C, Nobert KM. Therapeutic use of stem cells in horses: Which type, how, and when? Vet J 2013; 197:570-7. [DOI: 10.1016/j.tvjl.2013.04.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 01/01/2023]
|
19
|
Carvalho A, Yamada A, Golim M, Álvarez L, Jorge L, Conceição M, Deffune E, Hussni C, Alves A. Characterization of mesenchymal stem cells derived from equine adipose tissue. ARQ BRAS MED VET ZOO 2013. [DOI: 10.1590/s0102-09352013000400001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs) in horses through (1) the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2) flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O), osteogenic (Alizarin Red), and chondrogenic (Alcian Blue). The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.
Collapse
|
20
|
Shell K, Raabe O, Freitag C, Ohrndorf A, Christ HJ, Wenisch S, Arnhold S. Comparison of Equine Adipose Tissue-Derived Stem Cell Behavior and Differentiation Potential Under the Influence of 3% and 21% Oxygen Tension. J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2012.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Seo MS, Park SB, Choi SW, Kim JJ, Kim HS, Kang KS. Isolation and characterization of antler-derived multipotent stem cells. Cell Transplant 2013; 23:831-43. [PMID: 23294672 DOI: 10.3727/096368912x661391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies have reported that stem cells can be isolated from various tissues such as bone marrow, fatty tissue, umbilical cord blood, Wharton's jelly, and placenta. These types of stem cell studies have also arisen in veterinary medicine. Deer antlers show a seasonal regrowth of tissue, an unusual feature in mammals. Antler tissue therefore might offer a source of stem cells. To explore the possibility of stem cell populations within deer antlers, we isolated and successfully cultured antler-derived multipotent stem cells (MSCs). Antler MSCs were maintained in a growth medium, and the proliferation potential was measured via an assay called the cumulative population doubling level. Immunophenotyping and immunostaining revealed the intrinsic characteristic stem cell markers of antler MSCs. To confirm the ability to differentiate, we conducted osteogenic, adipogenic, and chondrogenic induction under the respective differentiation conditions. We discovered that antler MSCs have the ability to differentiate into multiple lineages. In conclusion, our results show that deer antler tissue may contain MSCs and therefore may be a potential source for veterinary regenerative therapeutics.
Collapse
Affiliation(s)
- Min-Soo Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Since the discovery of bone marrow derived stromal cell osteogenesis in the 1960s, tissue engineering with adult multipotent stromal cells (MSCs) has evolved as a promising approach to restore structure and function of bone compromised by injury or disease. To date, accelerated bone formation with MSCs has been demonstrated with a variety of tissue engineering strategies. Though MSC bone tissue engineering has advanced over the last few decades, limitations to clinical translation remain. A current review of this promising field is presented with a specific focus on equine investigations.
Collapse
Affiliation(s)
- Mandi J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Veterinary Clinical Sciences Department, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
23
|
Burk J, Badylak SF, Kelly J, Brehm W. Equine cellular therapy--from stall to bench to bedside? Cytometry A 2012; 83:103-13. [PMID: 23081833 DOI: 10.1002/cyto.a.22216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pioneering clinical stem cell research is being performed in the horse, a recipient of cutting edge veterinary medicine as well as a unique animal model, paving the way for human medical applications. Although demonstrable progress has been made on the clinical front, in vitro characterization of equine stem cells is still in comparatively early stages. To translate the promising results of clinical stem cell therapy in the horse, advances must be made in the characterization of equine stem cells. Aiming to improve communication between veterinarians and other natural scientists, this review gives an overview of veterinary "bedside" achievements, focusing on stem cell therapies in equine orthopedics as well as the current state of in vitro characterization of equine multipotent mesenchymal stromal cells (MSCs) and equine embryonic stem cells (ESCs).
Collapse
Affiliation(s)
- Janina Burk
- Faculty of Veterinary Medicine, Large Animal Clinic for Surgery, University of Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
24
|
Ranera B, Remacha AR, Álvarez-Arguedas S, Romero A, Vázquez FJ, Zaragoza P, Martín-Burriel I, Rodellar C. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue. BMC Vet Res 2012; 8:142. [PMID: 22913590 PMCID: PMC3483288 DOI: 10.1186/1746-6148-8-142] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 08/13/2012] [Indexed: 12/31/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2). This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. Results At the conclusion of culture, fewer BM-MSCs were obtained in hypoxia than in normoxia as a result of significantly reduced cell division. Hypoxic AT-MSCs proliferated less than normoxic AT-MSCs because of a significantly higher presence of non-viable cells during culture. Flow cytometry analysis revealed that the immunophenotype of both MSCs was maintained in both oxygen conditions. Gene expression analysis using RT-qPCR showed that statistically significant differences were only found for CD49d in BM-MSCs and CD44 in AT-MSCs. Similar gene expression patterns were observed at both 5% and 20% O2 for the remaining surface markers. Equine MSCs expressed the embryonic markers NANOG, OCT4 and SOX2 in both oxygen conditions. Additionally, hypoxic cells tended to display higher expression, which might indicate that hypoxia retains equine MSCs in an undifferentiated state. Conclusions Hypoxia attenuates the proliferative capacity of equine MSCs, but does not affect the phenotype and seems to keep them more undifferentiated than normoxic MSCs.
Collapse
Affiliation(s)
- Beatriz Ranera
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells--a comparative study. Vet Res Commun 2012; 36:139-48. [PMID: 22392598 DOI: 10.1007/s11259-012-9523-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2012] [Indexed: 12/29/2022]
Abstract
In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.
Collapse
|
26
|
Stem cell-based tissue engineering in veterinary orthopaedics. Cell Tissue Res 2012; 347:677-688. [PMID: 22287044 DOI: 10.1007/s00441-011-1316-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 12/21/2011] [Indexed: 01/23/2023]
Abstract
Regenerative medicine is one of the most intensively researched medical branches, with enormous progress every year. When it comes to translating research from bench to bedside, many of the pioneering innovations are achieved by cooperating teams of human and veterinary medical scientists. The veterinary profession has an important role to play in this new and evolving technology, holding a great scientific potential, because animals serve widely as models for human medicine and results obtained from animals may serve as preclinical results for human medicine. Regenerative veterinary medicine utilizing mesenchymal stromal cells (MSC) for the treatment of acute injuries as well as chronic disorders is gradually turning into clinical routine. As orthopaedic disorders represent a major part of all cases in veterinary clinical practice, it is not surprising that they are currently taking a leading role in MSC therapies. Therefore, the purpose of this paper is to give an overview on past and current achievements as well as future perspectives in stem cell-based tissue engineering in veterinary orthopaedics.
Collapse
|