1
|
Mifsud JCO, Gallagher RV, Holmes EC, Geoghegan JL. Transcriptome Mining Expands Knowledge of RNA Viruses across the Plant Kingdom. J Virol 2022; 96:e0026022. [PMID: 35638822 PMCID: PMC9769393 DOI: 10.1128/jvi.00260-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/24/2022] [Indexed: 01/07/2023] Open
Abstract
Our current understanding of plant viruses stems largely from those affecting economically important plants. Yet plant species in cultivation represent a small and biased subset of the plant kingdom. Here, we describe virus diversity and abundance in 1,079 transcriptomes from species across the breadth of the plant kingdom (Archaeplastida) by analyzing open-source data from the 1000 Plant Transcriptomes Initiative (1KP). We identified 104 potentially novel viruses, of which 40% were single-stranded positive-sense RNA viruses across eight orders, including members of the Hepelivirales, Tymovirales, Cryppavirales, Martellivirales, and Picornavirales. One-third of the newly described viruses were double-stranded RNA viruses from the orders Durnavirales and Ghabrivirales. The remaining were negative-sense RNA viruses from the Rhabdoviridae, Aspiviridae, Yueviridae, and Phenuiviridae and the newly proposed Viridisbunyaviridae. Our analysis considerably expands the known host range of 13 virus families to include lower plants (e.g., Benyviridae and Secoviridae) and 4 virus families to include alga hosts (e.g., Tymoviridae and Chrysoviridae). More broadly, however, a cophylogeny analysis revealed that the evolutionary history of these families is largely driven by cross-species transmission events. The discovery of the first 30-kDa movement protein in a nonvascular plant suggests that the acquisition of plant virus movement proteins occurred prior to the emergence of the plant vascular system. Together, these data highlight that numerous RNA virus families are associated with older evolutionary plant lineages than previously thought and that the apparent scarcity of RNA viruses found in lower plants likely reflects a lack of investigation rather than their absence. IMPORTANCE Our knowledge of plant viruses is mainly limited to those infecting economically important host species. In particular, we know little about those viruses infecting basal plant lineages such as the ferns, lycophytes, bryophytes, and charophytes. To expand this understanding, we conducted a broad-scale viral survey of species across the breadth of the plant kingdom. We found that basal plants harbor a wide diversity of RNA viruses, including some that are sufficiently divergent to likely compose a new virus family. The basal plant virome revealed offers key insights into the evolutionary history of core plant virus gene modules and genome segments. More broadly, this work emphasizes that the scarcity of viruses found in these species to date most likely reflects the limited research in this area.
Collapse
Affiliation(s)
- Jonathon C. O. Mifsud
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Rachael V. Gallagher
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Jemma L. Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Institute of Environmental Science and Research, Wellington, New Zealand
| |
Collapse
|
2
|
Rumbou A, Vainio EJ, Büttner C. Towards the Forest Virome: High-Throughput Sequencing Drastically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems. Microorganisms 2021; 9:microorganisms9081730. [PMID: 34442809 PMCID: PMC8399312 DOI: 10.3390/microorganisms9081730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Thanks to the development of HTS technologies, a vast amount of genetic information on the virosphere of temperate forests has been gained in the last seven years. To estimate the qualitative/quantitative impact of HTS on forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of HTS methods is extremely significant for forest virology. Reviewed data on viral presence in holobionts allowed us a first attempt to address the role of virome in holobionts. Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont; symbiotic microbiota and pathogens engage in a permanent interplay, which influences the host. Through virus–virus interplays synergistic or antagonistic relations may evolve, which may drastically affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protection based on endophytes and mycovirus biocontrol agents. The current analysis is conceived in light of the prospect that novel viruses may initiate an emergent infectious disease and that measures for the avoidance of future outbreaks in forests should be considered.
Collapse
Affiliation(s)
- Artemis Rumbou
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany;
- Correspondence:
| | - Eeva J. Vainio
- Natural Resources Institute Finland, Forest Health and Biodiversity, Latokartanonkaari 9, 00790 Helsinki, Finland;
| | - Carmen Büttner
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany;
| |
Collapse
|
3
|
Li L, Liu J, Zhang Q, Fu R, Zhu X, Li C, Chen J. Seed-borne viral dsRNA elements in three cultivatedRaphanusandBrassicaplants suggest three cryptoviruses. Can J Microbiol 2016; 62:287-95. [DOI: 10.1139/cjm-2015-0788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the 1970s, several dsRNA viruses, including Radish yellow edge virus, Raphanus sativus virus 1, Raphanus sativus virus 2, and Raphanus sativus virus 3, have been identified and reported as infecting radish. In the present study, in conjunction with a survey of seed-borne viruses in cultivated Brassica and Raphanus using the dsRNA diagnostic method, we discovered 3 novel cryptoviruses that infect Brassica and Raphanus: Raphanus sativus partitivirus 1, which infects radish (Raphanus sativus); Sinapis alba cryptic virus 1, which infects Sinapis alba; and Brassica rapa cryptic virus 1 (BrCV1), which infects Brassica rapa. The genomic organization of these cryptoviruses was analyzed and characterized. BrCV1 might represent the first plant partitivirus found in Gammapartitivirus. Additionally, the evolutionary relationships among all of the partitiviruses reported in Raphanus and Brassica were analyzed.
Collapse
Affiliation(s)
- Liqiang Li
- College of Life Science, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Jianning Liu
- Institute of Bioengineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People’s Republic of China
| | - Qiong Zhang
- Institute of Bioengineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People’s Republic of China
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Runying Fu
- Shenzhen Seventh People’s Hospital, Shenzhen, 518081, People’s Republic of China
| | - Xiwu Zhu
- Institute of Bioengineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People’s Republic of China
- Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 41700, People’s Republic of China
| | - Chao Li
- College of Life Science, Shenzhen University, Shenzhen, 518068, People’s Republic of China
| | - Jishuang Chen
- College of Life Science, Zhejiang University, Hangzhou, 310058, People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| |
Collapse
|
4
|
Koh SH, Li H, Admiraal R, Jones MGK, Wylie SJ. Catharanthus mosaic virus: A potyvirus from a gymnosperm, Welwitschia mirabilis. Virus Res 2015; 203:41-6. [PMID: 25804761 DOI: 10.1016/j.virusres.2015.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/12/2015] [Accepted: 03/14/2015] [Indexed: 11/24/2022]
Abstract
A virus from a symptomatic plant of the gymnosperm Welwitschia mirabilis Hook. growing as an ornamental plant in a domestic garden in Western Australia was inoculated to a plant of Nicotiana benthamiana where it established a systemic infection. The complete genome sequence of 9636 nucleotides was determined using high-throughput and Sanger sequencing technologies. The genome sequence shared greatest identity (83% nucleotides and 91% amino acids) with available partial sequences of catharanthus mosaic virus, indicating that the new isolate belonged to that taxon. Analysis of the phylogeny of the complete virus sequence placed it in a monotypic group in the genus Potyvirus. This is the first record of a virus from W. mirabilis, the first complete genome sequence of catharanthus mosaic virus determined, and the first record from Australia. This finding illustrates the risk to natural and managed systems posed by the international trade in live plants and propagules, which enables viruses to establish in new regions and infect new hosts.
Collapse
Affiliation(s)
- Shu Hui Koh
- Plant Biotechnology Group - Plant Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia 6150, Australia; School of Engineering and Information Technology, Mathematics & Statistics, Murdoch University, Perth, Western Australia 6150, Australia.
| | - Hua Li
- Plant Biotechnology Group - Plant Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia 6150, Australia
| | - Ryan Admiraal
- School of Engineering and Information Technology, Mathematics & Statistics, Murdoch University, Perth, Western Australia 6150, Australia
| | - Michael G K Jones
- Plant Biotechnology Group - Plant Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia 6150, Australia
| | - Stephen J Wylie
- Plant Biotechnology Group - Plant Virology, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
5
|
Discovery and molecular characterization of a new cryptovirus dsRNA genome from Japanese persimmon through conventional cloning and high-throughput sequencing. Virus Genes 2014; 50:160-4. [PMID: 25315633 DOI: 10.1007/s11262-014-1127-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Through the application of next generation sequencing, in synergy with conventional cloning of DOP-PCR fragments, two double-stranded RNA (dsRNA) molecules of about 1.5 kbp in size were isolated from leaf tissue of a Japanese persimmon (accession SSPI) from Apulia (southern Italy) showing veinlets necrosis. High-throughput sequencing allowed whole genome sequence assembly, yielding a 1,577 and a 1,491 bp contigs identified as dsRNA-1 and dsRNA-2 of a previously undescribed virus, provisionally named as Persimmon cryptic virus (PeCV). In silico analysis showed that both dsRNA fragments were monocistronic and comprised the RNA-dependent RNA polymerase (RdRp) and the capsid protein (CP) genes, respectively. Phylogenetic reconstruction revealed a close relationship of these dsRNAs with those of cryptoviruses described in woody and herbaceous hosts, recently gathered in genus Deltapartitivirus. Virus-specific primers for RT-PCR, designed in the CP cistron, detected viral RNAs also in symptomless persimmon trees sampled from the same geographical area of SSPI, thus proving that PeCV infection may be fairly common and presumably latent.
Collapse
|
6
|
Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ, Jiang D, Suzuki N. Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res 2014; 188:128-41. [DOI: 10.1016/j.virusres.2014.04.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
7
|
Hu Z, Leppla SH, Li B, Elkins CA. Antibodies specific for nucleic acids and applications in genomic detection and clinical diagnostics. Expert Rev Mol Diagn 2014; 14:895-916. [PMID: 25014728 DOI: 10.1586/14737159.2014.931810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Detection of nucleic acids using antibodies is uncommon. This is in part because nucleic acids are poor immunogens and it is difficult to elicit antibodies having high affinity to each type of nucleic acid while lacking cross-reactivity to others. We describe the origins and applications of a variety of anti-nucleic acid antibodies, including ones reacting with modified nucleosides and nucleotides, single-stranded DNA, double-stranded DNA, RNA, DNA:RNA hybrids, locked-nucleic acids or peptide nucleic acid:nucleic acid hybrids. Carefully selected antibodies can be excellent reagents for detecting bacteria, viruses, small RNAs, microRNAs, R-loops, cancer cells, stem cells, apoptotic cells and so on. The detection may be sensitive, simple, rapid, specific, reproducible, quantitative and cost-effective. Current microarray and diagnostic methods that depend on cDNA or cRNA can be replaced by using antibody detection of nucleic acids. Therefore, development should be encouraged to explore new utilities and create a robust arsenal of new anti-nucleic acid antibodies.
Collapse
Affiliation(s)
- Zonglin Hu
- Winchester Engineering & Analytical Center, Office of Regulatory Affairs, US Food and Drug Administration, 109 Holton Street, Winchester, MA 01890, USA
| | | | | | | |
Collapse
|
8
|
Lange M, Yellina AL, Orashakova S, Becker A. Virus-induced gene silencing (VIGS) in plants: an overview of target species and the virus-derived vector systems. Methods Mol Biol 2013; 975:1-14. [PMID: 23386291 DOI: 10.1007/978-1-62703-278-0_1] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The analysis of gene functions in non-model plant species is often hampered by the fact that stable genetic transformation to downregulate gene expression is laborious and time-consuming, or, for some species, even not achievable. Virus-induced gene silencing (VIGS) can serve as an alternative to mutant collections or stable transgenic plants to allow the characterization of gene functions in a wide range of angiosperm species, albeit in a transient way. VIGS vector systems have been developed from both RNA and DNA plant viral sources to specifically silence target genes in plants. VIGS is nowadays widely used in plant genetics for gene knockdown due to its ease of use and the short time required to generating phenotypes. Here, we summarize successfully targeted eudicot and monocot plant species along with their specific VIGS vector systems which are already available for researchers.
Collapse
Affiliation(s)
- Matthias Lange
- Plant Evodevo Group, Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | | | | |
Collapse
|
9
|
Abstract
The vast majority of well-characterized eukaryotic viruses are those that cause acute or chronic infections in humans and domestic plants and animals. However, asymptomatic persistent viruses have been described in animals, and are thought to be sources for emerging acute viruses. Although not previously described in these terms, there are also many viruses of plants that maintain a persistent lifestyle. They have been largely ignored because they do not generally cause disease. The persistent viruses in plants belong to the family Partitiviridae or the genus Endornavirus. These groups also have members that infect fungi. Phylogenetic analysis of the partitivirus RNA-dependent RNA polymerase genes suggests that these viruses have been transmitted between plants and fungi. Additional families of viruses traditionally thought to be fungal viruses are also found frequently in plants, and may represent a similar scenario of persistent lifestyles, and some acute or chronic viruses of crop plants may maintain a persistent lifestyle in wild plants. Persistent, chronic and acute lifestyles of plant viruses are contrasted from both a functional and evolutionary perspective, and the potential role of these lifestyles in host evolution is discussed.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73402, USA.
| |
Collapse
|
10
|
Szego A, Enünlü N, Deshmukh SD, Veliceasa D, Hunyadi-Gulyás E, Kühne T, Ilyés P, Potyondi L, Medzihradszky K, Lukács N. The genome of Beet cryptic virus 1 shows high homology to certain cryptoviruses present in phylogenetically distant hosts. Virus Genes 2010; 40:267-76. [PMID: 20058060 DOI: 10.1007/s11262-009-0432-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/05/2009] [Indexed: 11/28/2022]
Abstract
UNLABELLED This study determined the complete nucleotide sequence of Beet cryptic virus 1 (BCV1). As expected by analogy to previously sequenced alphacryptoviruses, dsRNA1 (2008 bp) encodes a 72.5-kDa protein containing sequence motifs characteristic for RNA-dependent RNA polymerases (RdRp). In addition to the full-length dsRNA1, a truncated form was also detected in dsRNA extracts. dsRNA2 (1783 bp) codes for the viral coat protein (CP) as proven by the identity of the predicted CP sequence to peptide sequences of the purified virion protein. The amino acid sequence of BCV1 RdRp as well as the 5'- and 3'-UTRs show 81-85% identity to the corresponding regions of Vicia cryptic virus (VCV), White clover cryptic virus 1 (WCCV1) and Carrot cryptic virus (CaCV). The amino acid sequence identity of the CP is about 55-62%, moreover, a strong conservation of predicted alpha-helical regions was observed. The high degree of similarity of these seed- and pollen-transmitted viruses persisting in phylogenetically distant hosts, together with their high similarity to fungal partitiviruses strongly supports the hypothesis that horizontal transfer by a fungus played a role in the emergence of the present cryptovirus species. The change in the distribution of cryptic viruses may also be due to human influence: While earlier BCV1 occurred frequently in sugar beet cultivars, it is very rare in cultivars currently used in agricultural practice and was detected in only one of the 28 cultivars investigated in our experiments. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s11262-009-0432-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anita Szego
- Department of Plant Physiology and Plant Biochemistry, Corvinus University of Budapest, Ménesi út 44, 1118 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Complete nucleotide sequences and genome characterization of a novel double-stranded RNA virus infecting Rosa multiflora. Arch Virol 2008; 153:455-62. [DOI: 10.1007/s00705-007-0008-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
|
12
|
Tzanetakis IE, Price R, Martin RR. Nucleotide sequence of the tripartite Fragaria chiloensis cryptic virus and presence of the virus in the Americas. Virus Genes 2007; 36:267-72. [DOI: 10.1007/s11262-007-0186-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 12/05/2007] [Indexed: 12/01/2022]
|