1
|
Sharma P, Gupta SK, Adenipekun EO, Barrett JB, Hiott LM, Woodley TA, Iwalokun BA, Oluwadun A, Ramadan HH, Frye JG, Jackson CR. Genome Analysis of Multidrug-Resistant Escherichia coli Isolated from Poultry in Nigeria. Foodborne Pathog Dis 2019; 17:1-7. [PMID: 31509034 DOI: 10.1089/fpd.2019.2659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli is one of the most common commensal bacteria of the gastrointestinal tract of humans and warm-blooded animals. Contaminated poultry can lead to disease outbreaks in consumers causing massive economic losses in the poultry industry. Additionally, commensal E. coli can harbor antibiotic resistance genes that can be transferred to other bacteria, including pathogens, in a colonized human host. In a previous study on antimicrobial resistance of E. coli from food animals from Nigeria, multidrug-resistant E. coli were detected. Three of those isolates were selected for further study using whole-genome sequencing due to the extensive drug resistance exhibited. All of the isolates carried the extended-spectrum β-lactamase (ESBL) genes, blaCTX-M15 and blaTEM-1, whereas one isolate harbored an additional ESBL, blaOXA-1. All of the tetracycline-resistant isolates carried tet(A). The genes aac3-IIa and aacA4, conferring resistance to aminoglycosides, were identified in an E. coli isolate resistant to gentamicin and tobramycin. In two E. coli isolates, dfrA14, qnrS1, and sulII, were detected conferring resistance to trimethoprim, fluoroquinolones, and sulfonamides, respectively. The third isolate carried dfrA17, no fluoroquinolone resistance gene, an additional sulI gene, and a chloramphenicol resistance gene, catB3. Mutations in candidate genes conferring resistance to fosfomycin and fluoroquinolones were also detected. Several efflux systems were detected in all the E. coli isolates and virulence-associated genes related to serum resistance, motility, and adhesion. E. coli and non-E. coli origin prophages were also identified in the isolates. The results underline the higher resolution power of whole-genome sequencing for investigation of antimicrobial resistance, virulence, and phage in E. coli.
Collapse
Affiliation(s)
- Poonam Sharma
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| | - Sushim K Gupta
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| | - Eyitayo O Adenipekun
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Lagos, Nigeria
| | - John B Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| | - Lari M Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| | - Tiffanie A Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| | - Bamidele A Iwalokun
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Olabisi Onabanjo University, Sagamu, Nigeria.,Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Afolabi Oluwadun
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Olabisi Onabanjo University, Sagamu, Nigeria
| | - Hazem H Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| |
Collapse
|
2
|
Kalatzis PG, Rørbo NI, Castillo D, Mauritzen JJ, Jørgensen J, Kokkari C, Zhang F, Katharios P, Middelboe M. Stumbling across the Same Phage: Comparative Genomics of Widespread Temperate Phages Infecting the Fish Pathogen Vibrio anguillarum. Viruses 2017; 9:E122. [PMID: 28531104 PMCID: PMC5454434 DOI: 10.3390/v9050122] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 01/03/2023] Open
Abstract
Nineteen Vibrio anguillarum-specific temperate bacteriophages isolated across Europe and Chile from aquaculture and environmental sites were genome sequenced and analyzed for host range, morphology and life cycle characteristics. The phages were classified as Siphoviridae with genome sizes between 46,006 and 54,201 bp. All 19 phages showed high genetic similarity, and 13 phages were genetically identical. Apart from sporadically distributed single nucleotide polymorphisms (SNPs), genetic diversifications were located in three variable regions (VR1, VR2 and VR3) in six of the phage genomes. Identification of specific genes, such as N6-adenine methyltransferase and lambda like repressor, as well as the presence of a tRNAArg, suggested a both mutualistic and parasitic interaction between phages and hosts. During short term phage exposure experiments, 28% of a V. anguillarum host population was lysogenized by the temperate phages and a genomic analysis of a collection of 31 virulent V. anguillarum showed that the isolated phages were present as prophages in >50% of the strains covering large geographical distances. Further, phage sequences were widely distributed among CRISPR-Cas arrays of publicly available sequenced Vibrios. The observed distribution of these specific temperate Vibriophages across large geographical scales may be explained by efficient dispersal of phages and bacteria in the marine environment combined with a mutualistic interaction between temperate phages and their hosts which selects for co-existence rather than arms race dynamics.
Collapse
Affiliation(s)
- Panos G Kalatzis
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Crete, 71500, Greece.
| | - Nanna Iben Rørbo
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
| | - Daniel Castillo
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
| | | | - Jóhanna Jørgensen
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Crete, 71500, Greece.
| | - Faxing Zhang
- Beijing Genomics Institute (BGI) Park, No.21 Hongan 3rd Street, Building NO. 7, Yantian District, Shenzhen 518083, China.
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Crete, 71500, Greece.
| | - Mathias Middelboe
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
| |
Collapse
|
3
|
Genome sequence of Ostreococcus tauri virus OtV-2 throws light on the role of picoeukaryote niche separation in the ocean. J Virol 2011; 85:4520-9. [PMID: 21289127 DOI: 10.1128/jvi.02131-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ostreococcus tauri, a unicellular marine green alga, is the smallest known free-living eukaryote and is ubiquitous in the surface oceans. The ecological success of this organism has been attributed to distinct low- and high-light-adapted ecotypes existing in different niches at a range of depths in the ocean. Viruses have already been characterized that infect the high-light-adapted strains. Ostreococcus tauri virus (OtV) isolate OtV-2 is a large double-stranded DNA algal virus that infects a low-light-adapted strain of O. tauri and was assigned to the algal virus family Phycodnaviridae, genus Prasinovirus. Our working hypothesis for this study was that different viruses infecting high- versus low-light-adapted O. tauri strains would provide clues to propagation strategies that would give them selective advantages within their particular light niche. Sequence analysis of the 184,409-bp linear OtV-2 genome revealed a range of core functional genes exclusive to this low-light genotype and included a variety of unexpected genes, such as those encoding an RNA polymerase sigma factor, at least four DNA methyltransferases, a cytochrome b(5), and a high-affinity phosphate transporter. It is clear that OtV-2 has acquired a range of potentially functional genes from its host, other eukaryotes, and even bacteria over evolutionary time. Such piecemeal accretion of genes is a trademark of large double-stranded DNA viruses that has allowed them to adapt their propagation strategies to keep up with host niche separation in the sunlit layers of the oceanic environment.
Collapse
|
4
|
Schroeder DC, Park Y, Yoon HM, Lee YS, Kang SW, Meints RH, Ivey RG, Choi TJ. Genomic analysis of the smallest giant virus--Feldmannia sp. virus 158. Virology 2009; 384:223-32. [PMID: 19054537 DOI: 10.1016/j.virol.2008.10.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/08/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Abstract
Genomic analysis of Feldmannia sp. virus 158, the second phaeovirus to be sequenced in its entirety, provides further evidence that large double-stranded DNA viruses share similar evolutionary pressures as cellular organisms. Reductive evolution is clearly evident within the phaeoviruses which occurred via several routes: the loss of genes from an ancestral virus core genome most likely through genetic drift; and as a result of relatively large recombination events that caused wholesale loss of genes. The entire genome is 154,641 bp in length and has 150 predicted coding sequences of which 87% have amino acid sequence similarities to other algal virus coding sequences within the family Phycodnaviridae. Significant similarities were found, for thirty eight coding sequences (25%), to genes in gene databanks that are known to be involved in processes that include DNA replication, DNA methylation, signal transduction, viral integration and transposition, and protein-protein interactions. Unsurprisingly, the greatest similarity was observed between the two known viruses that infect Feldmannia, indicating the taxonomic linkage of these two viruses with their hosts. Moreover, comparative analysis of phycodnaviral genomic sequences revealed the smallest set of core genes (10 out of a possible 31) required to make a functional nucleocytoplasmic large dsDNA virus.
Collapse
|
5
|
Meints RH, Ivey RG, Lee AM, Choi TJ. Identification of two virus integration sites in the brown alga Feldmannia chromosome. J Virol 2008; 82:1407-13. [PMID: 18032486 PMCID: PMC2224422 DOI: 10.1128/jvi.01983-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 11/12/2007] [Indexed: 11/20/2022] Open
Abstract
Two similar, large double-stranded DNA viruses, Feldmannia species virus 158 (FsV-158) and FsV-178, replicate only in the unilocular reproductive cells (sporangia) of a brown filamentous alga in the genus Feldmannia. Virus particles are not present in vegetative cells but they are produced in the sporangia formed on vegetative filaments that have been transferred newly into culture. Thus, we proposed that these viruses exist in the vegetative cells in a latent form (R. G. Ivey, E. C. Henry, A. M. Lee, L. Klepper, S. K. Krueger, and R. H. Meints, Virology 220:267-273, 1996). In this article we present evidence that the two FsV genomes are integrated into the host genome during vegetative growth. The FsV genome integration sites were identified by cloning the regions where the FsV genome is linked to the host DNA. FsV-158 and FsV-178 are integrated into two distinct locations in the algal genome. In contrast, the integration sites in the two viral genomes are identical. Notably, the integration sites in the host and viruses contain GC and CG dinucleotide sequences, respectively, from which the GC sequences are recovered at both host-virus junctions. The splice sites in the two FsV genomes are predicted to form a stem-loop structure with the CG dinucleotide in the loop portion.
Collapse
Affiliation(s)
- Russel H Meints
- Department of Microbiology, Pukyong National University, 599-1, Daeyeon 3-Dong, Nam-Gu, Busan 608-737, South Korea
| | | | | | | |
Collapse
|