1
|
Shah T, Li Q, Wang B, Baloch Z, Xia X. Geographical distribution and pathogenesis of ticks and tick-borne viral diseases. Front Microbiol 2023; 14:1185829. [PMID: 37293222 PMCID: PMC10244671 DOI: 10.3389/fmicb.2023.1185829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Ticks are obligatory hematophagous arthropods that harbor and transmit infectious pathogens to humans and animals. Tick species belonging to Amblyomma, Ixodes, Dermacentor, and Hyalomma genera may transmit certain viruses such as Bourbon virus (BRBV), Dhori virus (DHOV), Powassan virus (POWV), Omsk hemorrhagic fever virus (OHFV), Colorado tick fever virus (CTFV), Crimean-Congo hemorrhagic fever virus (CCHFV), Heartland virus (HRTV), Kyasanur forest disease virus (KFDV), etc. that affect humans and certain wildlife. The tick vectors may become infected through feeding on viraemic hosts before transmitting the pathogen to humans and animals. Therefore, it is vital to understand the eco-epidemiology of tick-borne viruses and their pathogenesis to optimize preventive measures. Thus this review summarizes knowledge on some medically important ticks and tick-borne viruses, including BRBV, POWV, OHFV, CTFV, CCHFV, HRTV, and KFDV. Further, we discuss these viruses' epidemiology, pathogenesis, and disease manifestations during infection.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| |
Collapse
|
2
|
Liu Z, Zhang Y, Cheng M, Ge N, Shu J, Xu Z, Su X, Kou Z, Tong Y, Qin C, Jin X. A single nonsynonymous mutation on ZIKV E protein-coding sequences leads to markedly increased neurovirulence in vivo. Virol Sin 2022; 37:115-126. [PMID: 35234632 PMCID: PMC8922429 DOI: 10.1016/j.virs.2022.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/20/2021] [Indexed: 01/23/2023] Open
Abstract
Zika virus (ZIKV) can infect a wide range of tissues including the developmental brain of human fetus. Whether specific viral genetic variants are linked to neuropathology is incompletely understood. To address this, we have intracranially serially passaged a clinical ZIKV isolate (SW01) in neonatal mice and discovered variants that exhibit markedly increased virulence and neurotropism. Deep sequencing analysis combining with molecular virology studies revealed that a single 67D (Aspartic acid) to N (Asparagine) substitution on E protein is sufficient to confer the increased virulence and neurotropism in vivo. Notably, virus clones with D67N mutation had higher viral production and caused more severe cytopathic effect (CPE) in human neural astrocytes U251 cells in vitro, indicating its potential neurological toxicity to human brain. These findings revealed that a single mutation D67N on ZIKV envelope may lead to severe neuro lesion that may help to explain the neurovirulence of ZIKV and suggest monitoring the occurrence of this mutation during nature infection may be important. Construction of a ZIKV adaptation mouse mode. Specific viral genetic changes of ZIKV are associated with severe neuropathology. D67N mutation on E protein markedly increase the neurovirulence of ZIKA virus.
Collapse
Affiliation(s)
- Zhihua Liu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yawei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Mengli Cheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ningning Ge
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jiayi Shu
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Su
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Kou
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Xia Jin
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
3
|
Shah SZ, Jabbar B, Ahmed N, Rehman A, Nasir H, Nadeem S, Jabbar I, Rahman ZU, Azam S. Epidemiology, Pathogenesis, and Control of a Tick-Borne Disease- Kyasanur Forest Disease: Current Status and Future Directions. Front Cell Infect Microbiol 2018; 8:149. [PMID: 29868505 PMCID: PMC5954086 DOI: 10.3389/fcimb.2018.00149] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/20/2018] [Indexed: 12/17/2022] Open
Abstract
In South Asia, Haemaphysalis spinigera tick transmits Kyasanur Forest Disease Virus (KFDV), a flavivirus that causes severe hemorrhagic fever with neurological manifestations such as mental disturbances, severe headache, tremors, and vision deficits in infected human beings with a fatality rate of 3-10%. The disease was first reported in March 1957 from Kyasanur forest of Karnataka (India) from sick and dying monkeys. Since then, between 400 and 500 humans cases per year have been recorded; monkeys and small mammals are common hosts of this virus. KFDV can cause epizootics with high fatality in primates and is a level-4 virus according to the international biosafety rules. The density of tick vectors in a given year correlates with the incidence of human disease. The virus is a positive strand RNA virus and its genome was discovered to code for one polyprotein that is cleaved post-translationally into 3 structural proteins (Capsid protein, Envelope Glycoprotein M and Envelope Glycoprotein E) and 7 non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). KFDV has a high degree of sequence homology with most members of the TBEV serocomplex. Alkhurma virus is a KFDV variant sharing a sequence similarity of 97%. KFDV is classified as a NIAID Category C priority pathogen due to its extreme pathogenicity and lack of US FDA approved vaccines and therapeutics; also, the infectious dose is currently unknown for KFD. In India, formalin-inactivated KFDV vaccine produced in chick embryo fibroblast is being used. Nevertheless, further efforts are required to enhance its long-term efficacy. KFDV remains an understudied virus and there remains a lack of insight into its pathogenesis; moreover, specific treatment to the disease is not available to date. Environmental and climatic factors involved in disseminating Kyasanur Forest Disease are required to be fully explored. There should be a mapping of endemic areas and cross-border veterinary surveillance needs to be developed in high-risk regions. The involvement of both animal and health sector is pivotal for circumscribing the spread of this disease to new areas.
Collapse
Affiliation(s)
- Syed Z. Shah
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Basit Jabbar
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Ahmed
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Anum Rehman
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Hira Nasir
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sarooj Nadeem
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Iqra Jabbar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Zia ur Rahman
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shafiq Azam
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Nayak A, Pattabiraman N, Fadra N, Goldman R, Kosakovsky Pond SL, Mazumder R. Structure-function analysis of hepatitis C virus envelope glycoproteins E1 and E2. J Biomol Struct Dyn 2014; 33:1682-94. [PMID: 25245635 DOI: 10.1080/07391102.2014.967300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hepatitis C virus (HCV) is the leading cause of chronic liver disease in humans. The envelope proteins of HCV are potential candidates for vaccine development. The absence of three-dimensional (3D) structures for the functional domain of HCV envelope proteins [E1.E2] monomer complex has hindered overall understanding of the virus infection, and also structure-based drug design initiatives. In this study, we report a 3D model containing both E1 and E2 proteins of HCV using the recently published structure of the core domain of HCV E2 and the functional part of E1, and investigate immunogenic implications of the model. HCV [E1.E2] molecule is modeled by using aa205-319 of E1 to aa421-716 of E2. Published experimental data were used to further refine the [E1.E2] model. Based on the model, we predict 77 exposed residues and several antigenic sites within the [E1.E2] that could serve as vaccine epitopes. This study identifies eight peptides which have antigenic propensity and have two or more sequentially exposed amino acids and 12 singular sites are under negative selection pressure that can serve as vaccine or therapeutic targets. Our special interest is 285FLVGQLFTFSPRRHW299 which has five negatively selected sites (L286, V287, G288, T292, and G303) with three of them sequential and four amino acids exposed (F285, L286, T292, and R296). This peptide in the E1 protein maps to dengue envelope vaccine target identified previously by our group. Our model provides for the first time an overall view of both the HCV envelope proteins thereby allowing researchers explore structure-based drug design approaches.
Collapse
Affiliation(s)
- Aparajita Nayak
- a Department of Biochemistry and Molecular Medicine , George Washington University , Washington , DC 20037 , USA
| | | | | | | | | | | |
Collapse
|
5
|
Gamino V, Höfle U. Pathology and tissue tropism of natural West Nile virus infection in birds: a review. Vet Res 2013; 44:39. [PMID: 23731695 PMCID: PMC3686667 DOI: 10.1186/1297-9716-44-39] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/24/2013] [Indexed: 01/26/2023] Open
Abstract
West Nile virus (WNV) is a globally distributed arthropod-borne flavivirus capable of infecting a wide variety of vertebrates, with birds as its natural reservoir. Although it had been considered a pathogen of little importance for birds, from the 1990's, and especially after its introduction in the North American continent in 1999, thousands of birds have succumbed to West Nile infection. This review summarizes the pathogenesis and pathology of WNV infection in birds highlighting differences in lesion and antigen distribution and severity among bird orders and families. Despite significant species differences in susceptibility to infection, WNV associated lesions and viral antigen are present in the majority of organs of infected birds. The non-progressive, acute or more prolonged course of the disease accounts for part of the differences in lesion and viral antigen distribution and lesion severity. Most likely a combination of host variables and environmental factors in addition to the intrinsic virulence and pathogenicity of the infecting WNV strain influence the pathogenesis of the infection.
Collapse
Affiliation(s)
- Virginia Gamino
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM) Ronda de Toledo s/n, Ciudad Real 13005, Spain
| | - Ursula Höfle
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM) Ronda de Toledo s/n, Ciudad Real 13005, Spain
| |
Collapse
|
6
|
Gamino V, Gutiérrez-Guzmán AV, Fernández-de-Mera IG, Ortíz JA, Durán-Martín M, de la Fuente J, Gortázar C, Höfle U. Natural Bagaza virus infection in game birds in southern Spain. Vet Res 2012; 43:65. [PMID: 22966904 PMCID: PMC3483237 DOI: 10.1186/1297-9716-43-65] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/22/2012] [Indexed: 12/28/2022] Open
Abstract
In late summer 2010 a mosquito born flavivirus not previously reported in Europe called Bagaza virus (BAGV) caused high mortality in red-legged partridges (Alectoris rufa) and ring-necked pheasants (Phasianus colchicus). We studied clinical findings, lesions and viral antigen distribution in naturally BAGV infected game birds in order to understand the apparently higher impact on red-legged partridges. The disease induced neurologic signs in the two galliform species and, to a lesser extent, in common wood pigeons (Columba palumbus). In red-legged partridges infection by BAGV caused severe haemosiderosis in the liver and spleen that was absent in pheasants and less evident in common wood pigeons. Also, BAGV antigen was present in vascular endothelium in multiple organs in red-legged partridges, and in the spleen in common wood pigeons, while in ring-necked pheasants it was only detected in neurons and glial cells in the brain. These findings indicate tropism of BAGV for endothelial cells and a severe haemolytic process in red-legged partridges in addition to the central nervous lesions that were found in all three species.
Collapse
Affiliation(s)
- Virginia Gamino
- Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Schein CH, Bowen DM, Lewis JA, Choi K, Paul A, van der Heden van Noort GJ, Lu W, Filippov DV. Physicochemical property consensus sequences for functional analysis, design of multivalent antigens and targeted antivirals. BMC Bioinformatics 2012; 13 Suppl 13:S9. [PMID: 23320474 PMCID: PMC3426803 DOI: 10.1186/1471-2105-13-s13-s9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Analysis of large sets of biological sequence data from related strains or organisms is complicated by superficial redundancy in the set, which may contain many members that are identical except at one or two positions. Thus a new method, based on deriving physicochemical property (PCP)-consensus sequences, was tested for its ability to generate reference sequences and distinguish functionally significant changes from background variability. Methods The PCP consensus program was used to automatically derive consensus sequences starting from sequence alignments of proteins from Flaviviruses (from the Flavitrack database) and human enteroviruses, using a five dimensional set of Eigenvectors that summarize over 200 different scalar values for the PCPs of the amino acids. A PCP-consensus protein of a Dengue virus envelope protein was produced recombinantly and tested for its ability to bind antibodies to strains using ELISA. Results PCP-consensus sequences of the flavivirus family could be used to classify them into five discrete groups and distinguish areas of the envelope proteins that correlate with host specificity and disease type. A multivalent Dengue virus antigen was designed and shown to bind antibodies against all four DENV types. A consensus enteroviral VPg protein had the same distinctive high pKa as wild type proteins and was recognized by two different polymerases. Conclusions The process for deriving PCP-consensus sequences for any group of aligned similar sequences, has been validated for sequences with up to 50% diversity. Ongoing projects have shown that the method identifies residues that significantly alter PCPs at a given position, and might thus cause changes in function or immunogenicity. Other potential applications include deriving target proteins for drug design and diagnostic kits.
Collapse
Affiliation(s)
- Catherine H Schein
- Institute for Translational Sciences, Computational Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Texas 77555-0857, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bowen DM, Lewis JA, Lu W, Schein CH. Simplifying complex sequence information: a PCP-consensus protein binds antibodies against all four Dengue serotypes. Vaccine 2012; 30:6081-7. [PMID: 22863657 DOI: 10.1016/j.vaccine.2012.07.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 12/15/2022]
Abstract
Designing proteins that reflect the natural variability of a pathogen is essential for developing novel vaccines and drugs. Flaviviruses, including Dengue (DENV) and West Nile (WNV), evolve rapidly and can "escape" neutralizing monoclonal antibodies by mutation. Designing antigens that represent many distinct strains is important for DENV, where infection with a strain from one of the four serotypes may lead to severe hemorrhagic disease on subsequent infection with a strain from another serotype. Here, a DENV physicochemical property (PCP)-consensus sequence was derived from 671 unique sequences from the Flavitrack database. PCP-consensus proteins for domain 3 of the envelope protein (EdomIII) were expressed from synthetic genes in Escherichia coli. The ability of the purified consensus proteins to bind polyclonal antibodies generated in response to infection with strains from each of the four DENV serotypes was determined. The initial consensus protein bound antibodies from DENV-1-3 in ELISA and Western blot assays. This sequence was altered in 3 steps to incorporate regions of maximum variability, identified as significant changes in the PCPs, characteristic of DENV-4 strains. The final protein was recognized by antibodies against all four serotypes. Two amino acids essential for efficient binding to all DENV antibodies are part of a discontinuous epitope previously defined for a neutralizing monoclonal antibody. The PCP-consensus method can significantly reduce the number of experiments required to define a multivalent antigen, which is particularly important when dealing with pathogens that must be tested at higher biosafety levels.
Collapse
Affiliation(s)
- David M Bowen
- Computational Biology, Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0857, United States
| | | | | | | |
Collapse
|
9
|
Lim SM, Koraka P, Osterhaus AD, Martina BE. West Nile virus: immunity and pathogenesis. Viruses 2011; 3:811-28. [PMID: 21994755 PMCID: PMC3185772 DOI: 10.3390/v3060811] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic, arthropod-borne flavivirus that is maintained in an enzootic cycle between mosquitoes and birds, but can also infect and cause disease in horses and humans. WNV is endemic in parts of Africa, Europe, the Middle East, and Asia, and since 1999 has spread to North America, Mexico, South America, and the Caribbean. WNV infects the central nervous system (CNS) and can cause severe disease in a small minority of infected humans, mostly immunocompromised or the elderly. This review discusses some of the mechanisms by which the immune system can limit dissemination of WNV infection and elaborates on the mechanisms involved in pathogenesis. Reasons for susceptibility to WNV-associated neuroinvasive disease in less than 1% of cases remain unexplained, but one favored hypothesis is that the involvement of the CNS is associated with a weak immune response allowing robust WNV replication in the periphery and spread of the virus to the CNS.
Collapse
Affiliation(s)
- Stephanie M. Lim
- Department of Virology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; E-Mails: (S.M.L.); (P.K.); (A.D.M.E.O.)
| | - Penelope Koraka
- Department of Virology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; E-Mails: (S.M.L.); (P.K.); (A.D.M.E.O.)
| | - Albert D.M.E. Osterhaus
- Department of Virology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; E-Mails: (S.M.L.); (P.K.); (A.D.M.E.O.)
| | - Byron E.E. Martina
- Department of Virology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; E-Mails: (S.M.L.); (P.K.); (A.D.M.E.O.)
| |
Collapse
|
10
|
Urcuqui-Inchima S, Patiño C, Torres S, Haenni AL, Díaz FJ. Recent developments in understanding dengue virus replication. Adv Virus Res 2010; 77:1-39. [PMID: 20951868 DOI: 10.1016/b978-0-12-385034-8.00001-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dengue is the most important cause of mosquito-borne virus diseases in tropical and subtropical regions in the world. Severe clinical outcomes such as dengue hemorrhagic fever and dengue shock syndrome are potentially fatal. The epidemiology of dengue has undergone profound changes in recent years, due to several factors such as expansion of the geographical distribution of the insect vector, increase in traveling, and demographic pressure. As a consequence, the incidence of dengue has increased dramatically. Since mosquito control has not been successful and since no vaccine or antiviral treatment is available, new approaches to this problem are needed. Consequently, an in-depth understanding of the molecular and cellular biology of the virus should be helpful to design efficient strategies for the control of dengue. Here, we review the recently acquired knowledge on the molecular and cell biology of the dengue virus life cycle based on newly developed molecular biology technologies.
Collapse
Affiliation(s)
- Silvio Urcuqui-Inchima
- Grupo de Inmunoviología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | | | | | | | | |
Collapse
|
11
|
Kozlovskaya L, Osolodkin D, Shevtsova A, Romanova L, Rogova Y, Dzhivanian T, Lyapustin V, Pivanova G, Gmyl A, Palyulin V, Karganova G. GAG-binding variants of tick-borne encephalitis virus. Virology 2010; 398:262-72. [DOI: 10.1016/j.virol.2009.12.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/25/2009] [Accepted: 12/10/2009] [Indexed: 11/30/2022]
|
12
|
Danecek P, Lu W, Schein CH. PCP consensus sequences of flaviviruses: correlating variance with vector competence and disease phenotype. J Mol Biol 2009; 396:550-63. [PMID: 19969003 DOI: 10.1016/j.jmb.2009.11.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/18/2009] [Accepted: 11/30/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND Computational methods are needed to design multivalent vaccines against flaviviruses (FVs) such as the West Nile virus or the dengue virus (DENV). OBJECTIVE We aimed to use physicochemical property (PCP) consensus sequences of FV strains to delineate conserved motifs, areas of maximum variability, and specific loci that correlate with arthropod vector, serotype, and disease severity. METHODS PCP consensus sequences for 27 species were prepared from 928 annotated sequences catalogued in Flavitrack. Alignments of these correlated well with the known structures of the NS3 protease domain and envelope (E) proteins. The PCPMer suite was used to identify motifs common to all FVs. Areas of PCP variability that correlated with phenotype were plotted on the structures. RESULTS Despite considerable diversity at the amino acid level, PCPs for both proteins were well conserved throughout the FVs. A series of insertions in E separated tick- from mosquito-borne viruses and all arthropod-borne viruses from isolates with no known vector or directly from insects. Comparison of a PCP consensus sequence of E derived from 600 DENV strains (DENV600) with individual ones for DENV1-DENV4 showed that most major serotype-specific variation occurs near these insertions. The DENV600 differed from one prepared from eight hemorrhagic or fatal strains from four DENV serotypes at only three positions, two of which overlap known escape mutant sites. CONCLUSIONS Comparing consensus sequences showed that substantial changes occur in only a few areas of the E protein. PCP consensus sequences can contribute to the design of multivalent vaccines.
Collapse
Affiliation(s)
- Petr Danecek
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0857, USA
| | | | | |
Collapse
|