1
|
Harrison RL, Rowley DL. The complete genome sequence of an alphabaculovirus from the brown tussock moth, Olene mendosa Hübner, expands our knowledge of lymantriine baculovirus diversity and evolution. Virus Genes 2022; 58:227-237. [PMID: 35380378 DOI: 10.1007/s11262-022-01899-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022]
Abstract
The complete genome sequence was determined for an apparent alphabaculovirus isolated from larval cadavers of the brown tussock moth, Olene mendosa Hübner, collected during an epizootic in Coimbatore, India. The genome was determined to be a circular 142,291 bp molecule, and 147 ORFs and nine homologous regions were annotated for the sequence. Analysis of the sequence confirmed that this virus, Olene mendosa nucleopolyhedrovirus (OlmeNPV), was a member of genus Alphabaculovirus in family Baculoviridae. Phylogenies inferred from nucleotide and amino acid alignments indicated that OlmeNPV was part of a group of viruses that infect moths of genus Lymantria, suggesting that OlmeNPV may have shifted hosts from a Lymantria species to an ancestral Olene species at some point during its evolutionary history. OlmeNPV was most closely related to Lymantria xylina multiple nucleopolyhedrovirus isolate 5 (LyxyMNPV-5). The genomes of OlmeNPV and LyxyMNPV-5 were distinguished not only by differences in ORF content, but by a 27 kbp region of the genome that is inverted in LyxyMNPV-5 relative to OlmeNPV. Pairwise nucleotide distances between OlmeNPV and other Lymantria spp. alphabaculoviruses indicate that OlmeNPV represents a new baculovirus species.
Collapse
Affiliation(s)
- Robert L Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Daniel L Rowley
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD, 20705, USA
| |
Collapse
|
2
|
Wang X, Gu Q, Zhang W, Jiang H, Chen S, Smagghe G, Niu J, Wang JJ. Prevalence of a Novel Bunyavirus in Tea Tussock Moth Euproctis pseudoconspersa (Lepidoptera: Lymantriidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6324099. [PMID: 34280294 PMCID: PMC8288992 DOI: 10.1093/jisesa/ieab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 06/13/2023]
Abstract
Euproctis pseudoconspersa is a major pest of tea plants, and also causes a skin rash on workers in tea plantations. Research on virus could provide fundamental insights for classification, genetic diversity, evolution, and host-virus interaction mechanisms. Here, we identified a novel RNA virus, Euproctis pseudoconspersa bunyavirus (Phenuiviridae), and found that it is widely distributed in field populations of E. pseudoconspersa. The replication of virus in E. pseudoconspersa was indicated by Tag-PCR. These results contribute to the classification of bunyaviruses and provide insight into the diversity of commensal E. pseudoconspersa bunyavirus and the host.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Tea Research Institute of Chongqing Academy of Agricultural Science, Chongqing, China
- International Joint Laboratory on China-Belgium Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiaoying Gu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory on China-Belgium Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hongyan Jiang
- Tea Research Institute of Chongqing Academy of Agricultural Science, Chongqing, China
| | - Shichun Chen
- Tea Research Institute of Chongqing Academy of Agricultural Science, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory on China-Belgium Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory on China-Belgium Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory on China-Belgium Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Li J, Lv Q, Han HL, Zhang AB. The complete mitochondrial genome of a tussock moth: Euproctis seitzi (Lepidoptera: Erebidae, Lymantriinae). Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1734493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Jing Li
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Qing Lv
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Hui-lin Han
- School of Forestry, Northeast Forestry University, Harbin, Heilongjiang, P. R. China
| | - Ai-bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| |
Collapse
|
4
|
Genome Analysis of a Novel Clade II.b Alphabaculovirus Obtained from Artaxa digramma. Viruses 2019; 11:v11100925. [PMID: 31601038 PMCID: PMC6832367 DOI: 10.3390/v11100925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 11/25/2022] Open
Abstract
Artaxa digramma is a lepidopteran pest distributed throughout southern China, Myanmar, Indonesia, and India. Artaxa digramma nucleopolyhedrovirus (ArdiNPV) is a specific viral pathogen of A. digramma and deemed as a promising biocontrol agent against the pest. In this study, the complete genome sequence of ArdiNPV was determined by deep sequencing. The genome of ArdiNPV contains a double-stranded DNA (dsDNA) of 161,734 bp in length and 39.1% G+C content. Further, 149 hypothetical open reading frames (ORFs) were predicted to encode proteins >50 amino acids in length, covering 83% of the whole genome. Among these ORFs, 38 were baculovirus core genes, 22 were lepidopteran baculovirus conserved genes, and seven were unique to ArdiNPV, respectively. No typical baculoviral homologous regions (hrs) were identified in the genome. ArdiNPV had five multi-copy genes including baculovirus repeated ORFs (bros), calcium/sodium antiporter B (chaB), DNA binding protein (dbp), inhibitor of apoptosis protein (iap), and p26. Interestingly, phylogenetic analyses showed that ArdiNPV belonged to Clade II.b of Group II Alphabaculoviruses, which all contain a second copy of dbp. The genome of ArdiNPV was the closest to Euproctis pseudoconspersa nucleopolyhedrovirus, with 57.4% whole-genome similarity. Therefore, these results suggest that ArdiNPV is a novel baculovirus belonging to a newly identified cluster of Clade II.b Alphabaculoviruses.
Collapse
|
5
|
Liu X, Yin F, Zhu Z, Hou D, Wang J, Zhang L, Wang M, Wang H, Hu Z, Deng F. Genomic sequencing and analysis of Sucra jujuba nucleopolyhedrovirus. PLoS One 2014; 9:e110023. [PMID: 25329074 PMCID: PMC4201490 DOI: 10.1371/journal.pone.0110023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022] Open
Abstract
The complete nucleotide sequence of Sucra jujuba nucleopolyhedrovirus (SujuNPV) was determined by 454 pyrosequencing. The SujuNPV genome was 135,952 bp in length with an A+T content of 61.34%. It contained 131 putative open reading frames (ORFs) covering 87.9% of the genome. Among these ORFs, 37 were conserved in all baculovirus genomes that have been completely sequenced, 24 were conserved in lepidopteran baculoviruses, 65 were found in other baculoviruses, and 5 were unique to the SujuNPV genome. Seven homologous regions (hrs) were identified in the SujuNPV genome. SujuNPV contained several genes that were duplicated or copied multiple times: two copies of helicase, DNA binding protein gene (dbp), p26 and cg30, three copies of the inhibitor of the apoptosis gene (iap), and four copies of the baculovirus repeated ORF (bro). Phylogenetic analysis suggested that SujuNPV belongs to a subclade of group II alphabaculovirus, which differs from other baculoviruses in that all nine members of this subclade contain a second copy of dbp.
Collapse
Affiliation(s)
- Xiaoping Liu
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Feifei Yin
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zheng Zhu
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Dianhai Hou
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jun Wang
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Lei Zhang
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Manli Wang
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hualin Wang
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Fei Deng
- State Key Laboratory of Virology, Virus Resource and Bioinformatics Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
6
|
Kikhno I. Identification of a conserved non-protein-coding genomic element that plays an essential role in Alphabaculovirus pathogenesis. PLoS One 2014; 9:e95322. [PMID: 24740153 PMCID: PMC3989284 DOI: 10.1371/journal.pone.0095322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 03/26/2014] [Indexed: 12/13/2022] Open
Abstract
Highly homologous sequences 154-157 bp in length grouped under the name of "conserved non-protein-coding element" (CNE) were revealed in all of the sequenced genomes of baculoviruses belonging to the genus Alphabaculovirus. A CNE alignment led to the detection of a set of highly conserved nucleotide clusters that occupy strictly conserved positions in the CNE sequence. The significant length of the CNE and conservation of both its length and cluster architecture were identified as a combination of characteristics that make this CNE different from known viral non-coding functional sequences. The essential role of the CNE in the Alphabaculovirus life cycle was demonstrated through the use of a CNE-knockout Autographa californica multiple nucleopolyhedrovirus (AcMNPV) bacmid. It was shown that the essential function of the CNE was not mediated by the presumed expression activities of the protein- and non-protein-coding genes that overlap the AcMNPV CNE. On the basis of the presented data, the AcMNPV CNE was categorized as a complex-structured, polyfunctional genomic element involved in an essential DNA transaction that is associated with an undefined function of the baculovirus genome.
Collapse
Affiliation(s)
- Irina Kikhno
- Institute of Molecular Biology & Genetics of Ukrainian Academy of Science, Kiev, Ukraine
- * E-mail:
| |
Collapse
|
7
|
Breitenbach JE, El-Sheikh ESA, Harrison RL, Rowley DL, Sparks ME, Gundersen-Rindal DE, Popham HJR. Determination and analysis of the genome sequence of Spodoptera littoralis multiple nucleopolyhedrovirus. Virus Res 2012; 171:194-208. [PMID: 23219924 DOI: 10.1016/j.virusres.2012.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 11/19/2022]
Abstract
The Spodoptera littoralis multiple nucleopolyhedrovirus (SpliMNPV), a pathogen of the Egyptian cotton leaf worm S. littoralis, was subjected to sequencing of its entire DNA genome and bioassay analysis comparing its virulence to that of other baculoviruses. The annotated SpliMNPV genome of 137,998 bp was found to harbor 132 open reading frames and 15 homologous repeat regions. Four unique genes not present in SpltMNPV were identified, as were 14 genes that were absent or translocated by comparison. Bioassay analysis of experimentally infected Spodoptera frugiperda revealed an extended killing time for SpliMNPV as compared to S. frugiperda MNPV (SfMNPV), but a level of mortality similar to that caused by infection with SfMNPV and superior to that of Autographa californica MNPV (AcMNPV). Although extensive similarity was observed between the genome structure and predicted translation products of SpliMNPV and Spodoptera litura MNPV (SpltMNPV), genetic distances between isolates of SpliMNPV and SpltMNPV suggest that they are in fact different species of genus Alphabaculovirus.
Collapse
Affiliation(s)
- Jonathan E Breitenbach
- Biological Control of Insects Research Laboratory, USDA Agricultural Research Service, Columbia, MO, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Thumbi DK, Eveleigh RJM, Lucarotti CJ, Lapointe R, Graham RI, Pavlik L, Lauzon HAM, Arif BM. Complete sequence, analysis and organization of the Orgyia leucostigma nucleopolyhedrovirus genome. Viruses 2011; 3:2301-27. [PMID: 22163346 PMCID: PMC3230853 DOI: 10.3390/v3112301] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 11/16/2022] Open
Abstract
The complete genome of the Orgyia leucostigma nucleopolyhedrovirus (OrleNPV) isolated from the whitemarked tussock moth (Orgyia leucostigma, Lymantridae: Lepidoptera) was sequenced, analyzed, and compared to other baculovirus genomes. The size of the OrleNPV genome was 156,179 base pairs (bp) and had a G+C content of 39%. The genome encoded 135 putative open reading frames (ORFs), which occupied 79% of the entire genome sequence. Three inhibitor of apoptosis (ORFs 16, 43 and 63), and five baculovirus repeated ORFs (bro-a through bro-e) were interspersed in the OrleNPV genome. In addition to six direct repeat (drs), a common feature shared among most baculoviruses, OrleNPV genome contained three homologous regions (hrs) that are located in the latter half of the genome. The presence of an F-protein homologue and the results from phylogenetic analyses placed OrleNPV in the genus Alphabaculovirus, group II. Overall, OrleNPV appears to be most closely related to group II alphabaculoviruses Ectropis obliqua (EcobNPV), Apocheima cinerarium (ApciNPV), Euproctis pseudoconspersa (EupsNPV), and Clanis bilineata (ClbiNPV).
Collapse
Affiliation(s)
- David K. Thumbi
- Sylvar Technologies Inc., P.O. Box 636 Station A, Fredericton, New Brunswick, E3B 5A6, Canada; E-Mails: (D.K.T.); (R.J.M.E); (R.L.)
| | - Robert J. M. Eveleigh
- Sylvar Technologies Inc., P.O. Box 636 Station A, Fredericton, New Brunswick, E3B 5A6, Canada; E-Mails: (D.K.T.); (R.J.M.E); (R.L.)
| | - Christopher J. Lucarotti
- Natural Resources Canada, Atlantic Forestry Centre, Canadian Forest Service, 1350 Regent Street, Fredericton, New Brunswick, E3C 2G6, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-506-452-3538; Fax: +1-506-452-3538
| | - Renée Lapointe
- Sylvar Technologies Inc., P.O. Box 636 Station A, Fredericton, New Brunswick, E3B 5A6, Canada; E-Mails: (D.K.T.); (R.J.M.E); (R.L.)
| | - Robert I. Graham
- Lancaster Environment Centre, Lancaster University, Lancaster, Lancashire, LA1 4YQ, UK; E-Mails:
| | - Lillian Pavlik
- Natural Resources Canada, Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street East, Sault Ste. Marie, Ontario, P6A 2E5, Canada; E-Mails: (L.P); (H.A.M.L.); (B.M.A.)
| | - Hilary A. M. Lauzon
- Natural Resources Canada, Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street East, Sault Ste. Marie, Ontario, P6A 2E5, Canada; E-Mails: (L.P); (H.A.M.L.); (B.M.A.)
| | - Basil M. Arif
- Natural Resources Canada, Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street East, Sault Ste. Marie, Ontario, P6A 2E5, Canada; E-Mails: (L.P); (H.A.M.L.); (B.M.A.)
| |
Collapse
|
9
|
Miele SAB, Garavaglia MJ, Belaich MN, Ghiringhelli PD. Baculovirus: molecular insights on their diversity and conservation. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:379424. [PMID: 21716740 PMCID: PMC3119482 DOI: 10.4061/2011/379424] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/04/2011] [Accepted: 02/14/2011] [Indexed: 12/11/2022]
Abstract
The Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp. In this study, genome sequences from 57 baculoviruses were analyzed to reevaluate the number and identity of core genes and to understand the distribution of the remaining coding sequences. Thirty one core genes with orthologs in all genomes were identified along with other 895 genes differing in their degrees of representation among reported genomes. Many of these latter genes are common to well-defined lineages, whereas others are unique to one or a few of the viruses. Phylogenetic analyses based on core gene sequences and the gene composition of the genomes supported the current division of the Baculoviridae into 4 genera: Alphabaculovirus, Betabaculovirus, Gammabaculovirus, and Deltabaculovirus.
Collapse
Affiliation(s)
- Solange Ana Belen Miele
- LIGBCM (Laboratorio de Ingeniería Genética y Biología Celular y Molecular), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, Argentina
| | | | | | | |
Collapse
|
10
|
Yu M, Carstens EB. Characterization of an Autographa californica multiple nucleopolyhedrovirus mutant lacking the ac39(p43) gene. Virus Res 2010; 155:300-6. [PMID: 20974197 DOI: 10.1016/j.virusres.2010.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/15/2010] [Accepted: 10/15/2010] [Indexed: 01/12/2023]
Abstract
Open reading frame 39 [orf39(p43)] of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is present in 10 isolates of the Alphabaculovirus genus. It is highly conserved in sequence and genomic location in the Group I but much less conserved in the Group II viruses. To investigate the potential role of p43 in AcMNPV infection, we constructed and characterized a p43 knockout mutant. The results showed that the p43 region was expressed as RNA from 3h post infection to at least 24h post infection, and its expression pattern was identical to the expression profile of its neighbouring gene, p47. P47 is an essential core gene component of the baculovirus RNA polymerase. The deletion of the p43 region was confirmed by PCR analysis of bacmid DNA and by RT-PCR analysis of RNA purified from p43 knockout infected cells. The results supported the hypothesis that a large transcript, initiating upstream of p47, includes the p43 ORF. Analyses of protein synthesis in p43 knockout infected cells clearly demonstrated that there were no obvious differences in the timing or amount of expression of P47, LEF-3, or VP39. Growth curves showed that infectious budded virus production and occlusion body formation were also not affected by the p43 knockout. We conclude that orf39(p43) is not essential for virus replication in cell culture.
Collapse
Affiliation(s)
- Mei Yu
- Department of Microbiology and Immunology, Queen's University, Kingston, Canada ON K7L 3N6
| | | |
Collapse
|