1
|
Wei X, Lu K, Chang Z, Guo H, Li Q, Yuan B, Liu C, Yang Z, Liu H. Genetic analyses and functional validation of ruminant SLAMs reveal potential hosts for PPRV. Vet Res 2025; 56:57. [PMID: 40103005 PMCID: PMC11916873 DOI: 10.1186/s13567-025-01489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/05/2024] [Indexed: 03/20/2025] Open
Abstract
Peste des petits ruminants (PPR), caused by the peste des petits ruminants virus (PPRV), is a highly contagious disease affecting ruminants. While goats and sheep are well-known hosts, PPRV has also spread to wild ruminants, and it remains unclear which ruminant species can be infected. SLAM (Signaling lymphocytic activation molecule) acts as the primary receptor for PPRV, playing a crucial role in the viral infection process. Identifying which ruminant SLAMs can mediate PPRV infection is essential for understanding the potential hosts of PPRV, which is vital for effective eradication efforts. In this study, we first extracted 77 ruminant species' SLAM sequences from ruminant genome database. Based on these sequences, we predicted the structures of ruminant SLAMs. The analysis revealed that SLAM conformation is similar across ruminant species, and the potential PPRV H protein binding domain residues were conserved among SLAMs of these 77 species. Phylogenetic analysis of SLAM grouped ruminants into six families. We then selected representative SLAMs from each ruminant family to assess their role in PPRV infection. Our findings demonstrated that ruminant SLAMs efficiently mediated PPRV infection, with enhanced viral amplification observed in cells expressing SLAM from java mouse deer (Tragulidae) and goat (Bovidae), compared to cells expressing SLAM from white tailed deer (Cervidae) and giraffe (Giraffidae). These results underscore the need to consider a broader range of potential host populations beyond goat and sheep in efforts to prevent and eradicate PPRV.
Collapse
Affiliation(s)
- Xi Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengwu Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanwei Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinfeng Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Binxuan Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chen Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China.
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China.
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China.
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China.
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China.
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China.
| |
Collapse
|
2
|
Aklilu F, Ashenafi H, Kassa T, Chaka H, Sibhatu D, Shegu D, Mohammed AA, Belaineh R, Kidane M, Asgedom H, Chibssa T, Mekonnen G, Sirak A, Gebredufe S, Schulz C, Herzog CM, Kapur V. Comparative pathogenesis of Ethiopia/Habru/2014 Lineage-IV peste des petits ruminants virus in goats and cattle. BMC Vet Res 2024; 20:473. [PMID: 39420341 PMCID: PMC11484333 DOI: 10.1186/s12917-024-04313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Peste des Petits Ruminants (PPR) is a highly contagious viral disease primarily affecting goats and sheep, with clinical manifestations ranging from peracute disease to subclinical infection, particularly in atypical hosts such as cattle. The role of atypical hosts such as cattle to the spread of PPR remains controversial, with conflicting reports in the literature. Despite its worldwide significance, considerable knowledge gaps exist regarding the pathogenesis and clinical progression in both primary and atypical hosts. This study aimed to elucidate the tissue tropism, pathogenesis, virus shedding, clinical progression, and pathology associated with experimental PPR virus infection in indigenous goats and cattle. To this end, 32 animals-16 goats and 16 cattle-were intranasally inoculated with the Ethiopia/Habru/2014 Lineage-IV strain of the PPR virus followed by detailed clinical evaluations and systematic sampling at pre-established intervals to assess serological conversion, viral shedding, and the pathogenesis of the infection across both species. RESULTS The results show that goats exhibited typical clinical signs 4 days post-inoculation, with seroconversion by day 6 and early detection of viral RNA in swabs and tissues by day 3 and virus isolation starting day 4. In contrast, cattle exhibited minimal clinical signs, with seroconversion occurring at day 8 with viral RNA detected in tissue samples at day 4 and virus isolation starting day 6 in tissues and in a single nasal swab at day 8. Clinical scores and tissue positivity rates significantly differed between goats and cattle (P = 0.007 and P < 0.001, respectively). While goats exhibited expected gross and histopathological lesions, cattle showed only nonspecific lesions. CONCLUSIONS Together, our findings highlight the importance of comparative pathology studies for better understanding virus dynamics and transmission pathways that may help inform more effective PPR control programs. Future research should explore the pathogenesis of different PPRV lineages in cattle, assessing variations in disease progression and potential for epidemiological impact.
Collapse
Affiliation(s)
- Fasil Aklilu
- Animal Health Institute, Sebeta, Ethiopia.
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Hagos Ashenafi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tesfu Kassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hassen Chaka
- Food and Agricultural Organization (NSAH-CJW), Addis Ababa, Ethiopia
| | | | | | | | | | | | | | | | | | | | | | - Claudia Schulz
- Department of Biological Sciences and Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Catherine M Herzog
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| | - Vivek Kapur
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
3
|
Fan X, Kannan Villalan A, Hu Y, Wu X, Wang H, Wang X. Prediction of the Potential Host of Peste Des Petits Ruminants Virus by the Least Common Amino Acid Pattern in SLAM Receptor. Transbound Emerg Dis 2024; 2024:4374388. [PMID: 40303034 PMCID: PMC12017033 DOI: 10.1155/2024/4374388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2025]
Abstract
Peste-des-Petits Ruminants Virus (PPRV) causes a highly contagious and severe infectious disease known as Peste-des-Petits Ruminants (PPR), resulting in significant mortality in both domestic and wild ruminants. An in-depth understanding of the molecular relationship between PPRV and susceptible hosts is essential for the prevention of PPR. The signaling lymphocytic-activation molecule (SLAM) acts as a key receptor in susceptible host species, mediating interactions with PPRV and triggering PPR in ruminants. This study offers an in-depth analysis of PPRV-susceptible host species as well as the identified SLAM amino acid sequences to date. Investigation reveals that nine families-Bovidae, Camelidae, Cervidae, Elephantidae, Suidae, Felidae, Canidae, Muridae, and Ceratopogonidae-have been affected by PPRV infection. Furthermore, a bioinformatics-based approach was proposed to screen the least common amino acid patterns (LCAP) in important SLAM receptor regions of known PPRV-susceptible species. Research findings reveal that 14 least common amino acid sites (LCAS) in SLAM amino acid sequences (I61, I63, S60, S70, K76, K78, I79, S81, L82, E123, N125, S127, V128, and F131) exhibit a prevalent similarity to LCAP across all known susceptible species. Comparative analysis of these 14 LCAP with SLAM nucleotide sequences from unknown susceptible ruminants to identify species at heightened risk of PPRV. In the result, 48 species from 20 different families across six orders were at potential risk of being infected with PPRV. This exploration suggests the feasibility of assessing potential hosts at high risk of PPRV infection through the LCAS screening technique. Moreover, it offers a means to anticipate and issue warnings regarding the likelihood of interspecies transmission. In conclusion, this study integrates molecular biology and bioinformatics, shedding light on PPRV infection dynamics and paving the way for predictive strategies to prevent the spread of this devastating disease among ruminant populations.
Collapse
Affiliation(s)
- Xin Fan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
- Key Laboratory for Wildlife Diseases and Bio-Security Management of Heilongjiang Province, Harbin 150040, Heilongjiang Province, China
| | - Arivizhivendhan Kannan Villalan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
- Key Laboratory for Wildlife Diseases and Bio-Security Management of Heilongjiang Province, Harbin 150040, Heilongjiang Province, China
| | - YeZhi Hu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
- Key Laboratory for Wildlife Diseases and Bio-Security Management of Heilongjiang Province, Harbin 150040, Heilongjiang Province, China
| | - XiaoDong Wu
- China Animal Health and Epidemiology Center, Qingdao 266032, Shandong Province, China
| | - HaoNing Wang
- School of Geography and Tourism, Harbin University, Harbin 150086, Heilongjiang Province, China
| | - XiaoLong Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
- Key Laboratory for Wildlife Diseases and Bio-Security Management of Heilongjiang Province, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
4
|
Chen Y, Wang T, Yang Y, Fang Y, Zhao B, Zeng W, Lv D, Zhang L, Zhang Y, Xue Q, Chen X, Wang J, Qi X. Extracellular vesicles derived from PPRV-infected cells enhance signaling lymphocyte activation molecular (SLAM) receptor expression and facilitate virus infection. PLoS Pathog 2022; 18:e1010759. [PMID: 36084159 PMCID: PMC9491601 DOI: 10.1371/journal.ppat.1010759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/21/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. PPRV is lymphotropic in nature and SLAM was identified as the primary receptor for PPRV and other Morbilliviruses. Many viruses have been demonstrated to engage extracellular vesicles (EVs) to facilitate their replication and pathogenesis. Here, we provide evidence that PPRV infection significantly induced the secretion levels of EVs from goat PBMC, and that PPRV-H protein carried in EVs can enhance SLAM receptor expression in the recipient cells via suppressing miR-218, a negative miRNA directly targeting SLAM gene. Importantly, EVs-mediated increased SLAM expression enhances PPRV infectivity as well as the expression of various cytokines related to SLAM signaling pathway in the recipient cells. Moreover, our data reveal that PPRV associate EVs rapidly entry into the recipient cells mainly through macropinocytosis pathway and cooperated with caveolin- and clathrin-mediated endocytosis. Taken together, our findings identify a new strategy by PPRV to enhance virus infection and escape innate immunity by engaging EVs pathway. Peste des petitsruminants virus (PPRV) infection induces a transient but severe immunosuppression in the host, which threatens both small livestock and endangered susceptible wildlife populations in many countries. Despite extensive research, the mechanism underlying pathogenesis of PPRV infection remains elusive. Our data provide the first direct evidence that the EVs derived from PPRV-infected cells are involved in PPRV replication. In this study, the EVs derived from PPRV-infected goat PBMCs can enhance SLAM expression in the recipient cells, and more importantly, EVs-mediated increased SLAM expression enhances PPRV replication as well as the expression of various cytokines related to SLAM signaling pathway in the recipient cells. Taken together, our research has provided new insight into understanding the effect of EVs on PPRV replication and pathogenesis, and revealed a potential therapeutic target for antiviral intervention.
Collapse
Affiliation(s)
- Yan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Bao Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Animal Disease Control Center, Xi’an, China
| | - Wei Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Daiyue Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Leyan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiwen Chen
- Animal Disease Prevention and Control & Healthy Breeding Engineering Technology Research Center, Mianyang Normal University, Mianyang, Sichuan, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JW); (XQ)
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JW); (XQ)
| |
Collapse
|
5
|
Piewbang C, Chansaenroj J, Kongmakee P, Banlunara W, Poovorawan Y, Techangamsuwan S. Genetic Adaptations, Biases, and Evolutionary Analysis of Canine Distemper Virus Asia-4 Lineage in a Fatal Outbreak of Wild-Caught Civets in Thailand. Viruses 2020; 12:361. [PMID: 32224857 PMCID: PMC7232145 DOI: 10.3390/v12040361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 01/07/2023] Open
Abstract
Canine morbillivirus (CDV) is a serious pathogen that can cause fatal systemic disease in a wide range of domestic and wildlife carnivores. Outbreaks of CDV in wildlife species lead to questions regarding the dispersal of the CDV origin. In the present study, we identified a fatal CDV outbreak in caged wild-caught civets in Thailand. Full-length genetic analysis revealed that CDV from the Asia-4 lineage served as the likely causative agent, which was supported by the viral localization in tissues. Evolutionary analysis based on the CDV hemagglutinin (H) gene revealed that the present civet CDV has co-evolved with CDV strains in dogs in Thailand since about 2014. The codon usage pattern of the CDV H gene revealed that the CDV genome has a selective bias of an A/U-ended codon preference. Furthermore, the codon usage pattern of the CDV Asia-4 strain from potential hosts revealed that the usage pattern was related more to the codon usage of civets than of dogs. This finding may indicate the possibility that the discovered CDV had initially adapted its virulence to infect civets. Therefore, the CDV Asia-4 strain might pose a potential risk to civets. Further epidemiological, evolutionary, and codon usage pattern analyses of other CDV-susceptible hosts are required.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.P.); (W.B.)
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.C.); (Y.P.)
| | - Piyaporn Kongmakee
- The Zoological Park Organization under The Royal Patronage of H.M. The King, Bangkok 10800, Thailand;
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.P.); (W.B.)
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (J.C.); (Y.P.)
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.P.); (W.B.)
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
meng X, Zhu X, Alfred N, Zhang Z. Identification of amino acid residues involved in the interaction between peste-des-petits-ruminants virus haemagglutinin protein and cellular receptors. J Gen Virol 2020; 101:242-251. [PMID: 31859612 PMCID: PMC7416607 DOI: 10.1099/jgv.0.001368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/19/2019] [Indexed: 02/04/2023] Open
Abstract
Peste-des-petits-ruminants virus (PPRV) haemagglutinin (H) protein mediates binding to cellular receptors and then initiates virus entry. To identify the key residues of PPRV H (Hv) protein of the Nigeria 75/1 strain involved in binding to receptors, interaction of the Hv and mutated Hv (mHv) proteins with receptors (SLAM and Nectin 4) and their mutants (mSLAM1, mSLAM2, mSLAM3 and mNectin 4) was investigated using surface plasmon resonance imaging (SPRi) and coimmunoprecipitation (co-IP) assays. The results showed that the Hv protein failed to interact with mSLAM3, but interacted at a strong or medium intensity with SLAM, mSLAM2, Nectin 4 and mNectin 4, and at a low level with mSLAM1. The mHv protein was unable to interact with SLAM and its mutants, but bound to Nectin 4 and mNectin 4 with medium and weak intensity, respectively. Further analysis showed that the Hv protein could precipitate mSLAM1, mSLAM2 and mNectin 4, but not mSLAM3. The mHv protein failed to coprecipitate with SLAM and its mutants. The binding activities of mNectin 4 and Nectin 4 to mHv were less than 30.36 and 51.94 % of the wild-type levels, respectively. Based on the results obtained, amino acids at positions R389, L464, I498, R503, R533, Y541, Y543, F552 and Y553 of H protein and I61, H62, L64, K76, K78, E123, H130, I210, A211, S226 and R227 in SLAM were identified to be essential for the specificity of H-SLAM interaction, while the critical residues of H-Nectin 4 interaction require further study. These findings would improve our understanding of the invasive mechanisms of PPRV.
Collapse
Affiliation(s)
- Xuelian meng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou 730046, PR China
| | - Xueliang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou 730046, PR China
| | - Niyokwishimira Alfred
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou 730046, PR China
| | - Zhidong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou 730046, PR China
| |
Collapse
|
7
|
Host Cellular Receptors for the Peste des Petits Ruminant Virus. Viruses 2019; 11:v11080729. [PMID: 31398809 PMCID: PMC6723671 DOI: 10.3390/v11080729] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Peste des Petits Ruminant (PPR) is an important transboundary, OIE-listed contagious viral disease of primarily sheep and goats caused by the PPR virus (PPRV), which belongs to the genus Morbillivirus of the family Paramyxoviridae. The mortality rate is 90–100%, and the morbidity rate may reach up to 100%. PPR is considered economically important as it decreases the production and productivity of livestock. In many endemic poor countries, it has remained an obstacle to the development of sustainable agriculture. Hence, proper control measures have become a necessity to prevent its rapid spread across the world. For this, detailed information on the pathogenesis of the virus and the virus host interaction through cellular receptors needs to be understood clearly. Presently, two cellular receptors; signaling lymphocyte activation molecule (SLAM) and Nectin-4 are known for PPRV. However, extensive information on virus interactions with these receptors and their impact on host immune response is still required. Hence, a thorough understanding of PPRV receptors and the mechanism involved in the induction of immunosuppression is crucial for controlling PPR. In this review, we discuss PPRV cellular receptors, viral host interaction with cellular receptors, and immunosuppression induced by the virus with reference to other Morbilliviruses.
Collapse
|
8
|
Duque-Valencia J, Sarute N, Olarte-Castillo XA, Ruíz-Sáenz J. Evolution and Interspecies Transmission of Canine Distemper Virus-An Outlook of the Diverse Evolutionary Landscapes of a Multi-Host Virus. Viruses 2019; 11:v11070582. [PMID: 31247987 PMCID: PMC6669529 DOI: 10.3390/v11070582] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 12/17/2022] Open
Abstract
Canine distemper virus (CDV) is a worldwide distributed virus which belongs to the genus Morbillivirus within the Paramyxoviridae family. CDV spreads through the lymphatic, epithelial, and nervous systems of domestic dogs and wildlife, in at least six orders and over 20 families of mammals. Due to the high morbidity and mortality rates and broad host range, understanding the epidemiology of CDV is not only important for its control in domestic animals, but also for the development of reliable wildlife conservation strategies. The present review aims to give an outlook of the multiple evolutionary landscapes and factors involved in the transmission of CDV by including epidemiological data from multiple species in urban, wild and peri-urban settings, not only in domestic animal populations but at the wildlife interface. It is clear that different epidemiological scenarios can lead to the presence of CDV in wildlife even in the absence of infection in domestic populations, highlighting the role of CDV in different domestic or wild species without clinical signs of disease mainly acting as reservoirs (peridomestic and mesocarnivores) that are often found in peridomestic habits triggering CDV epidemics. Another scenario is driven by mutations, which generate genetic variation on which random drift and natural selection can act, shaping the genetic structure of CDV populations leading to some fitness compensations between hosts and driving the evolution of specialist and generalist traits in CDV populations. In this scenario, the highly variable protein hemagglutinin (H) determines the cellular and host tropism by binding to signaling lymphocytic activation molecule (SLAM) and nectin-4 receptors of the host; however, the multiple evolutionary events that may have facilitated CDV adaptation to different hosts must be evaluated by complete genome sequencing. This review is focused on the study of CDV interspecies transmission by examining molecular and epidemiological reports based on sequences of the hemagglutinin gene and the growing body of studies of the complete genome; emphasizing the importance of long-term multidisciplinary research that tracks CDV in the presence or absence of clinical signs in wild species, and helping to implement strategies to mitigate the infection. Integrated research incorporating the experience of wildlife managers, behavioral and conservation biologists, veterinarians, virologists, and immunologists (among other scientific areas) and the inclusion of several wild and domestic species is essential for understanding the intricate epidemiological dynamics of CDV in its multiple host infections.
Collapse
Affiliation(s)
- July Duque-Valencia
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Medellín 050012, Colombia
| | - Nicolás Sarute
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la Republica, Montevideo 11200, Uruguay
- Department of Microbiology and Immunology, UIC College of Medicine, Chicago, IL 60612, USA
| | - Ximena A Olarte-Castillo
- Facultad de Ciencias Exactas, Naturales y Agropecuarias. Universidad de Santander (UDES), sede Bucaramanga 680002, Colombia
| | - Julián Ruíz-Sáenz
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Medellín 050012, Colombia.
| |
Collapse
|
9
|
Yadav AK, Rajak KK, Bhatt M, Kumar A, Chakravarti S, Sankar M, Muthuchelvan D, Kumar R, Khulape S, Singh RP, Singh RK. Comparative sequence analysis of morbillivirus receptors and its implication in host range expansion. Can J Microbiol 2019; 65:783-794. [PMID: 31238018 DOI: 10.1139/cjm-2019-0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SLAM (CD150) and nectin-4 are the major morbillivirus receptors responsible for virus pathogenesis and host range expansion. Recently, morbillivirus infections have been reported in unnatural hosts, including endangered species, posing a threat to their conservation. To understand the host range expansion of morbilliviruses, we generated the full-length sequences of morbillivirus receptors (goat, sheep, and dog SLAM, and goat nectin-4) and tried to correlate their role in determining host tropism. A high level of amino acid identity was observed between the sequences of related species, and phylogenetic reconstruction showed that the receptor sequences of carnivores, marine mammals, and small ruminants grouped separately. Analysis of the ligand binding region (V region; amino acid residues 52-136) of SLAM revealed high amino acid identity between small ruminants and bovine SLAMs. Comparison of canine SLAM with ruminants and non-canids SLAM revealed appreciable changes, including charge alterations. Significant differences between feline SLAM and canine SLAM have been reported. The binding motifs of nectin-4 genes (FPAG motif and amino acid residues 60, 62, and 63) were found to be conserved in sheep, goat, and dog. The differences reported in the binding region may be responsible for the level of susceptibility or resistance of a species to a particular morbillivirus.
Collapse
Affiliation(s)
- Ajay Kumar Yadav
- Division of Biological Products, Indian Council of Agricultural Research (ICAR) - Indian Veterinary Research Institute (IVRI), Izatnagar-243122, Bareilly, Uttar Pradesh, India.,ICAR - National Research Centre on Pig, Rani, Guwahati, Assam-781131, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, Indian Council of Agricultural Research (ICAR) - Indian Veterinary Research Institute (IVRI), Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Mukesh Bhatt
- Division of Biological Products, Indian Council of Agricultural Research (ICAR) - Indian Veterinary Research Institute (IVRI), Izatnagar-243122, Bareilly, Uttar Pradesh, India.,ICAR - National Organic Farming Research Institute, Tadong, Gangtok, Sikkim-737102, India
| | - Ashok Kumar
- Division of Biological Products, Indian Council of Agricultural Research (ICAR) - Indian Veterinary Research Institute (IVRI), Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Soumendu Chakravarti
- Division of Biological Products, Indian Council of Agricultural Research (ICAR) - Indian Veterinary Research Institute (IVRI), Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Muthu Sankar
- Temperate Animal Husbandry Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Mukteswar-263138, Nainital, Uttarakhand, India
| | - Dhanavelu Muthuchelvan
- Division of Virology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Mukteswar-263138, Nainital, Uttarakhand, India
| | - Ravi Kumar
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| | - Sagar Khulape
- ICAR-D-FMD, Indian Veterinary Research Institute (IVRI), Mukteswar-263138, Nainital, Uttarakhand, India
| | - Rabindra Prasad Singh
- Division of Biological Products, Indian Council of Agricultural Research (ICAR) - Indian Veterinary Research Institute (IVRI), Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Raj Kumar Singh
- Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar-243122, Bareilly, Uttar Pradesh, India
| |
Collapse
|
10
|
Kumar N, Barua S, Riyesh T, Tripathi BN. Advances in peste des petits ruminants vaccines. Vet Microbiol 2017; 206:91-101. [PMID: 28161212 PMCID: PMC7130925 DOI: 10.1016/j.vetmic.2017.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/13/2016] [Accepted: 01/12/2017] [Indexed: 11/27/2022]
Abstract
Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants that leads to high morbidity and mortality thereby results in devastating economic consequences to the livestock industry. PPR is currently endemic across most parts of Asia and Africa, the two regions with the highest concentration of poor people in the world. Sheep and goats in particularly contribute significantly towards the upliftment of livelihood of the poor and marginal farmers in these regions. In this context, PPR directly affecting the viability of sheep and goat husbandry has emerged as a major hurdle in the development of these regions. The control of PPR in these regions could significantly contribute to poverty alleviation, therefore, the Office International des Epizooties (OIE) and Food and Agricultural Organization (FAO) have targeted the control and eradication of PPR by 2030 a priority. In order to achieve this goal, a potent, safe and efficacious live-attenuated PPR vaccine with long-lasting immunity is available for immunoprophylaxis. However, the live-attenuated PPR vaccine is thermolabile and needs maintenance of an effective cold chain to deliver into the field. In addition, the infected animals cannot be differentiated from vaccinated animals. To overcome these limitations, some recombinant vaccines have been developed. This review comprehensively describes about the latest developments in PPR vaccines.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.
| | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
11
|
Sannat C, Sen A, Rajak KK, Singh R, Chandel BS, Chauhan HC. Comparative analysis of peste des petits ruminants virus tropism in Vero and Vero/SLAM cells. JOURNAL OF APPLIED ANIMAL RESEARCH 2014. [DOI: 10.1080/09712119.2013.875900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|