1
|
Wang X, Larrea-Sarmiento A, Olmedo-Velarde A, Al Rwahnih M, Borth W, Suzuki JY, Wall MM, Melzer M, Hu J. Survey of Viruses Infecting Basella alba in Hawaii. PLANT DISEASE 2023; 107:1022-1026. [PMID: 36167515 DOI: 10.1094/pdis-02-22-0449-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Malabar spinach plants (Basella alba, Basellaceae) with leaves exhibiting symptoms of mosaic, rugosity, and malformation were found in a community garden on Oahu, HI in 2018. Preliminary studies using enzyme-linked immunosorbent assay and reverse-transcription (RT)-PCR identified Basella rugose mosaic virus (BaRMV) in symptomatic plants. However, nucleotide sequence analysis of RT-PCR amplicons indicated that additional potyviruses were also present in the symptomatic Malabar spinach. High-throughput sequencing (HTS) analysis was conducted on ribosomal RNA-depleted composite RNA samples of potyvirus-positive plants from three locations. Assembled contigs shared sequences similar to BaRMV, chilli veinal mottle virus (ChiVMV), Alternanthera mosaic virus (AltMV), Basella alba endornavirus (BaEV), broad bean wilt virus 2 (BBWV2), and Iresine viroid 1. Virus- and viroid-specific primers were designed based on HTS sequencing results and used in RT-PCR and Sanger sequencing to confirm the presence of these viruses and the viroid. We tested 63 additional samples from six community gardens for a survey of viruses in Malabar spinach and found that 21 of them were positive for BaRMV, 57 for ChiVMV, 21 for AltMV, 19 for BaEV, and 14 for BBWV2. This is the first characterization of the virome from B. alba.
Collapse
Affiliation(s)
- Xupeng Wang
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Adriana Larrea-Sarmiento
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Alejandro Olmedo-Velarde
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Wayne Borth
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Jon Y Suzuki
- United States Department of Agriculture, Agricultural Research Service, Pacific Basin Agricultural Research Center, Hilo, HI 96720
| | - Marisa M Wall
- United States Department of Agriculture, Agricultural Research Service, Pacific Basin Agricultural Research Center, Hilo, HI 96720
| | - Michael Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| |
Collapse
|
2
|
Ksenofontov AL, Petoukhov MV, Matveev VV, Fedorova NV, Semenyuk PI, Arutyunyan AM, Manukhova TI, Evtushenko EA, Nikitin NA, Karpova OV, Shtykova EV. Effect of the Coat Protein N-Terminal Domain Structure on the Structure and Physicochemical Properties of Virions of Potato Virus X and Alternanthera Mosaic Virus. BIOCHEMISTRY (MOSCOW) 2023; 88:119-130. [PMID: 37068873 DOI: 10.1134/s0006297923010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The amino acid sequences of the coat proteins (CPs) of the potexviruses potato virus X (PVX) and alternanthera mosaic virus (AltMV) share ~40% identity. The N-terminal domains of these proteins differ in the amino acid sequence and the presence of the N-terminal fragment of 28 residues (ΔN peptide) in the PVX CP. Here, we determined the effect of the N-terminal domain on the structure and physicochemical properties of PVX and AltMV virions. The circular dichroism spectra of these viruses differed significantly, and the melting point of PVX virions was 10-12°C higher than that of AltMV virions. Alignment of the existing high-resolution 3D structures of the potexviral CPs showed that the RMSD value between the Cα-atoms was the largest for the N-terminal domains of the two compared models. Based on the computer modeling, the ΔN peptide of the PVX CP is fully disordered. According to the synchrotron small-angle X-ray scattering (SAXS) data, the structure of CPs from the PVX and AltMV virions differ; in particular, the PVX CP has a larger portion of crystalline regions and, therefore, is more ordered. Based on the SAXS data, the diameters of the PVX and AltMV virions and helix parameters in solution were calculated. The influence of the conformation of the PVX CP N-terminal domain and its position relative to the virion surface on the virion structure was investigated. Presumably, an increased thermal stability of PVX virions vs. AltMV is provided by the extended N-terminal domain (ΔN peptide, 28 amino acid residues), which forms additional contacts between the adjacent CP subunits in the PVX virion.
Collapse
Affiliation(s)
- Alexander L Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Maxim V Petoukhov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Vladimir V Matveev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
| | - Natalia V Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Pavel I Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatiana I Manukhova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Nikolai A Nikitin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga V Karpova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Eleonora V Shtykova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
| |
Collapse
|
3
|
Manukhova TI, Evtushenko EA, Ksenofontov AL, Arutyunyan AM, Kovalenko AO, Nikitin NA, Karpova OV. Thermal remodelling of Alternanthera mosaic virus virions and virus-like particles into protein spherical particles. PLoS One 2021; 16:e0255378. [PMID: 34320024 PMCID: PMC8318239 DOI: 10.1371/journal.pone.0255378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
The present work addresses the thermal remodelling of flexible plant viruses with a helical structure and virus-like particles (VLPs). Here, for the first time, the possibility of filamentous Alternanthera mosaic virus (AltMV) virions' thermal transition into structurally modified spherical particles (SP) has been demonstrated. The work has established differences in formation conditions of SP from virions (SPV) and VLPs (SPVLP) that are in accordance with structural data (on AltMV virions and VLPs). SP originate from AltMV virions through an intermediate stage. However, the same intermediate stage was not detected during AltMV VLPs' structural remodelling. According to the biochemical analysis, AltMV SPV consist of protein and do not include RNA. The structural characterisation of AltMV SPV/VLP by circular dichroism, intrinsic fluorescence spectroscopy and thioflavin T fluorescence assay has been performed. AltMV SPV/VLP adsorption properties and the availability of chemically reactive surface amino acids have been analysed. The revealed characteristics of AltMV SPV/VLP indicate that they could be applied as protein platforms for target molecules presentation and for the design of functionally active complexes.
Collapse
Affiliation(s)
- Tatiana I. Manukhova
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina A. Evtushenko
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander L. Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander M. Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Angelina O. Kovalenko
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolai A. Nikitin
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga V. Karpova
- Faculty of Biology, Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Ryabchevskaya EM, Evtushenko EA, Arkhipenko MV, Donchenko EK, Nikitin NA, Atabekov JG, Karpova OV. A Recombinant Rotavirus Antigen Based on the Coat Protein of Alternanthera Mosaic Virus. Mol Biol 2020; 54:243-248. [PMID: 32431461 PMCID: PMC7222081 DOI: 10.1134/s0026893320020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/23/2022]
Abstract
Thanks to their strong immunostimulating properties and safety for humans, plant viruses represent an appropriate basis for the design of novel vaccines. The coat protein of Alternanthera mosaic virus can form virus-like particles that are stable under physiological conditions and have adjuvant properties. This work presents a recombinant human rotavirus A antigen based on the epitope of rotavirus structural protein VP6, using Alternanthera mosaic virus coat protein as a carrier. An expression vector containing the gene of Alternanthera mosaic virus (MU strain) coat protein fused to the epitope of rotavirus protein VP6 was designed. Immunoblot analysis showed that the chimeric protein was effectively recognized by commercial polyclonal antibodies to rotavirus and therefore is a suitable candidate for development of a vaccine prototype. Interaction of the chimeric recombinant protein with the native coat protein of Alternanthera mosaic virus and its RNA resulted in the formation of ribonucleoprotein complexes that were recognized by anti-rotavirus antibodies.
Collapse
Affiliation(s)
- E. M. Ryabchevskaya
- Department of Virology, Faculty of Biology, Moscow State University, 119234 Moscow, Russia
| | - E. A. Evtushenko
- Department of Virology, Faculty of Biology, Moscow State University, 119234 Moscow, Russia
| | - M. V. Arkhipenko
- Department of Virology, Faculty of Biology, Moscow State University, 119234 Moscow, Russia
| | - E. K. Donchenko
- Department of Virology, Faculty of Biology, Moscow State University, 119234 Moscow, Russia
| | - N. A. Nikitin
- Department of Virology, Faculty of Biology, Moscow State University, 119234 Moscow, Russia
| | - J. G. Atabekov
- Department of Virology, Faculty of Biology, Moscow State University, 119234 Moscow, Russia
- Institute of Bioengineering, Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 117312 Moscow, Russia
| | - O. V. Karpova
- Department of Virology, Faculty of Biology, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
5
|
Arkhipenko MV, Nikitin NA, Baranov OA, Evtushenko EA, Atabekov JG, Karpova OV. Surface Charge Mapping on Virions and Virus-Like Particles of Helical Plant Viruses. Acta Naturae 2019; 11:73-78. [PMID: 31993237 PMCID: PMC6977955 DOI: 10.32607/20758251-2019-11-4-73-78] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Currently, the assembly of helical plant viruses is poorly understood. The viral assembly and infection may be affected by the charge distribution on the virion surface. However, only the total virion charge (isoelectric point) has been determined for most plant viruses. Here, we report on the first application of positively charged magnetic nanoparticles for mapping the surface charge distribution of helical plant viruses. The charge was demonstrated to be unevenly distributed on the surface of viruses belonging to different taxonomic groups, with the negative charge being predominantly located at one end of the virions. This charge distribution is mainly controlled by viral RNA.
Collapse
Affiliation(s)
- M. V. Arkhipenko
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - N. A. Nikitin
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - O. A. Baranov
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - E. A. Evtushenko
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - J. G. Atabekov
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - O. V. Karpova
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| |
Collapse
|
6
|
Donchenko E, Trifonova E, Nikitin N, Atabekov J, Karpova O. Alternanthera mosaic potexvirus: Several Features, Properties, and Application. Adv Virol 2018; 2018:1973705. [PMID: 30018641 PMCID: PMC6029478 DOI: 10.1155/2018/1973705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/23/2018] [Indexed: 11/18/2022] Open
Abstract
Alternanthera mosaic virus (AltMV) is a typical member of the Potexvirus genus in its morphology and genome structure; still it exhibits a number of unique features. They allow this virus to be considered a promising object for biotechnology. Virions and virus-like particles (VLPs) of AltMV are stable in a wide range of conditions, including sera of laboratory animals. AltMV VLPs can assemble at various pH and ionic strengths. Furthermore, AltMV virions and VLPs demonstrate high immunogenicity, enhancing the immune response to the target antigen thus offering the possibility of being used as potential adjuvants. Recently, for the first time for plant viruses, we showed the structural difference between morphologically similar viral and virus-like particles on AltMV virions and VLPs. In this review, we discuss the features of AltMV virions, AltMV VLP assembly, and their structure and properties, as well as the characteristics of AltMV isolates, host plants, infection symptoms, AltMV isolation and purification, genome structure, viral proteins, and AltMV-based vectors.
Collapse
Affiliation(s)
- Ekaterina Donchenko
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ekaterina Trifonova
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Nikolai Nikitin
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Joseph Atabekov
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Olga Karpova
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
7
|
Donchenko EK, Pechnikova EV, Mishyna MY, Manukhova TI, Sokolova OS, Nikitin NA, Atabekov JG, Karpova OV. Structure and properties of virions and virus-like particles derived from the coat protein of Alternanthera mosaic virus. PLoS One 2017; 12:e0183824. [PMID: 28837650 PMCID: PMC5570366 DOI: 10.1371/journal.pone.0183824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023] Open
Abstract
Plant viruses and their virus-like particles (VLPs) have a lot of advantages for biotechnological applications including complete safety for humans. Alternanthera mosaic virus (AltMV) is a potentially promising object for design of novel materials. The 3D structures of AltMV virions and its VLPs were obtained by single particle EM at ~13Å resolution. The comparison of the reconstructions and a trypsin treatment revealed that AltMV CPs possesses a different fold in the presence (virions) and absence of viral RNA (VLPs). For the first time, the structure of morphologically similar virions and virus-like particles based on the coat protein of a helical filamentous plant virus is shown to be different. Despite this, both AltMV virions and VLPs are stable in a wide range of conditions. To provide a large amount of AltMV for biotechnology usage the isolation procedure was modified.
Collapse
Affiliation(s)
| | - Evgeniya V. Pechnikova
- Laboratory of Electron Microscopy, V.A. Shoubnikov Institute of Crystallography of Russian Academy of Sciences, Moscow, Russia
- Nano-, Bio-, Information, Cognitive, Socio-Humanistic (NBICS) Science and Technology Center, National Research Centre "Kurchatov Institute", Moscow, Russia
| | | | | | - Olga S. Sokolova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Olga V. Karpova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Semenyuk PI, Karpova OV, Ksenofontov AL, Kalinina NO, Dobrov EN, Makarov VV. Structural Properties of Potexvirus Coat Proteins Detected by Optical Methods. BIOCHEMISTRY. BIOKHIMIIA 2016; 81:1522-1530. [PMID: 28259129 DOI: 10.1134/s0006297916120130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It has been shown by X-ray analysis that cores of coat proteins (CPs) from three potexviruses, flexible helical RNA-containing plant viruses, have similar α-helical structure. However, this similarity cannot explain structural lability of potexvirus virions, which is believed to determine their biological activity. Here, we used circular dichroism (CD) spectroscopy in the far UV region to compare optical properties of CPs from three potexviruses with the same morphology and similar structure. CPs from Alternanthera mosaic virus (AltMV), potato aucuba mosaic virus (PAMV), and potato virus X (PVX) have been studied in a free state and in virions. The CD spectrum of AltMV virions was similar to the previously obtained CD spectrum of papaya mosaic virus (PapMV) virions, but differed significantly from the CD spectrum of PAMV virions. The CD spectrum of PAMV virions resembled in its basic characteristics the CD spectrum of PVX virions characterized by molar ellipticity that is abnormally low for α-helical proteins. Homology modeling of the CP structures in AltMV, PAMV, and PVX virions was based on the known high-resolution structures of CPs from papaya mosaic virus and bamboo mosaic virus and confirmed that the structures of the CP cores in all three viruses were nearly identical. Comparison of amino acid sequences of different potexvirus CPs and prediction of unstructured regions in these proteins revealed a possible correlation between specific features in the virion CD spectra and the presence of disordered N-terminal segments in the CPs.
Collapse
Affiliation(s)
- P I Semenyuk
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
9
|
Complete Genome Sequence of Alternanthera mosaic virus, Isolated from Achyranthes bidentata in Asia. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00020-16. [PMID: 26988034 PMCID: PMC4796113 DOI: 10.1128/genomea.00020-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Alternanthera mosaic virus (AltMV) infecting Achyranthes bidentata was first detected in Asia, and the complete genome sequence (6,604 nucleotides) was determined. Sequence identity analysis and phylogenetic analysis confirmed that this isolate is the most phylogenetically distant AltMV isolate worldwide.
Collapse
|
10
|
Putlyaev EV, Smirnov AA, Karpova OV, Atabekov JG. Double Subgenomic Promoter Control for a Target Gene Superexpression by a Plant Viral Vector. BIOCHEMISTRY. BIOKHIMIIA 2015; 80:1039-46. [PMID: 26547072 DOI: 10.1134/s000629791508009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several new deconstructed vectors based on a potexvirus genome sequence for efficient expression of heterologous proteins in plants were designed. The first obtained vector (AltMV-single), based on the Alternanthera mosaic virus (AltMV) strain MU genome, bears a typical architecture for deconstructed plant viral vectors, i.e. a triple gene block was deleted from the viral genome and the model gene of interest was placed under control of the first viral subgenomic promoter. To enhance the efficiency of expression, maintained by the AltMV-single, another vector (AltMV-double) was designed. In AltMV-double, the gene of interest was controlled by two viral subgenomic promoters located sequentially without a gap upstream of the target gene. It was found that AltMV-double provided a significantly higher level of accumulation of the target protein in plants than AltMV-single. Moreover, our data clearly show the requirement of the presence and functioning of both the subgenomic promoters for demonstrated high level of target protein expression by AltMV-double. Taken together, our results describe an additional possible way to enhance the efficiency of transient protein expression maintained in plants by a plant viral vector.
Collapse
Affiliation(s)
- E V Putlyaev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | |
Collapse
|
11
|
Jang C, Seo EY, Nam J, Bae H, Gim YG, Kim HG, Cho IS, Lee ZW, Bauchan GR, Hammond J, Lim HS. Insights into Alternanthera mosaic virus TGB3 Functions: Interactions with Nicotiana benthamiana PsbO Correlate with Chloroplast Vesiculation and Veinal Necrosis Caused by TGB3 Over-Expression. FRONTIERS IN PLANT SCIENCE 2013; 4:5. [PMID: 23386854 PMCID: PMC3560364 DOI: 10.3389/fpls.2013.00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/08/2013] [Indexed: 05/18/2023]
Abstract
Alternanthera mosaic virus (AltMV) triple gene block 3 (TGB3) protein is involved in viral movement. AltMV TGB3 subcellular localization was previously shown to be distinct from that of Potato virus X (PVX) TGB3, and a chloroplast binding domain identified; veinal necrosis and chloroplast vesiculation were observed in Nicotiana benthamiana when AltMV TGB3 was over-expressed from PVX. Plants with over-expressed TGB3 showed more lethal damage under dark conditions than under light. Yeast-two-hybrid analysis and bimolecular fluorescence complementation (BiFC) reveal that Arabidopsis thaliana PsbO1 has strong interactions with TGB3; N. benthamiana PsbO (NbPsbO) also showed obvious interaction signals with TGB3 through BiFC. These results demonstrate an important role for TGB3 in virus cell-to-cell movement and virus-host plant interactions. The Photosystem II oxygen-evolving complex protein PsbO interaction with TGB3 is presumed to have a crucial role in symptom development and lethal damage under dark conditions. In order to further examine interactions between AtPsbO1, NbPsbO, and TGB3, and to identify the binding domain(s) in TGB3 protein, BiFC assays were performed between AtPsbO1 or NbPsbO and various mutants of TGB3. Interactions with C-terminally deleted TGB3 were significantly weaker than those with wild-type TGB3, and both N-terminally deleted TGB3 and a TGB3 mutant previously shown to lose chloroplast interactions failed to interact detectably with PsbO in BiFC. To gain additional information about TGB3 interactions in AltMV-susceptible plants, we cloned 12 natural AltMV TGB3 sequence variants into a PVX expression vector to examine differences in symptom development in N. benthamiana. Symptom differences were observed on PVX over-expression, with all AltMV TGB3 variants showing more severe symptoms than the WT PVX control, but without obvious correlation to sequence differences.
Collapse
Affiliation(s)
- Chanyong Jang
- Department of Applied Biology, Chungnam National UniversityDaejeon, South Korea
| | - Eun-Young Seo
- Department of Applied Biology, Chungnam National UniversityDaejeon, South Korea
| | - Jiryun Nam
- Department of Applied Biology, Chungnam National UniversityDaejeon, South Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Yeong Guk Gim
- Department of Applied Biology, Chungnam National UniversityDaejeon, South Korea
| | - Hong Gi Kim
- Department of Applied Biology, Chungnam National UniversityDaejeon, South Korea
| | - In Sook Cho
- National Institute of Horticultural and Herbal Science, Rural Development AdministrationSuwon, South Korea
| | - Zee-Won Lee
- Division of Life Science, Korea Basic Science InstituteDaejeon, South Korea
| | - Gary R. Bauchan
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - John Hammond
- Floral and Nursery Plants Research Unit, US National Arboretum, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
- *Correspondence: John Hammond, Floral and Nursery Plants Research Unit, US National Arboretum, United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, B-010A, Beltsville, MD 20705, USA. e-mail: ; Hyoun-Sub Lim, Department of Applied Biology, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764, South Korea. e-mail:
| | - Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National UniversityDaejeon, South Korea
- *Correspondence: John Hammond, Floral and Nursery Plants Research Unit, US National Arboretum, United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, B-010A, Beltsville, MD 20705, USA. e-mail: ; Hyoun-Sub Lim, Department of Applied Biology, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764, South Korea. e-mail:
| |
Collapse
|
12
|
Mukhamedzhanova AA, Smirnov AA, Arkhipenko MV, Ivanov PA, Chirkov SN, Rodionova NP, Karpova OV, Atabekov JG. Characterization of Alternanthera mosaic virus and its Coat Protein. Open Virol J 2011; 5:136-40. [PMID: 22216073 PMCID: PMC3245411 DOI: 10.2174/1874357901105010136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/09/2011] [Accepted: 09/21/2011] [Indexed: 11/22/2022] Open
Abstract
A new isolate of Alternantheramosaic virus (AltMV-MU) was purified from Portulaca grandiflora plants. It has been shown that the AltMV-MU coat protein (CP) can be efficiently reassembled in vitro under different conditions into helical RNA-free virus-like particles (VLPs) antigenically related to native virus. The AltMV-MU and VLPs were examined by atomic force and transmission electron microscopies. The encapsidated AltMV-MU RNA is nontranslatable in vitro. However, it can be translationally activated by CP phosphorylation or by binding to the TGB1protein from the virus-coded movement triple gene block.
Collapse
|