1
|
Yan S, Yang F, Yao H, Dong D, Wu D, Wu N, Ye C, Wu H. A multiplex real-time RT-PCR assay for the detection of H1, H2 and H3 subtype avian influenza viruses. Virus Genes 2023; 59:333-337. [PMID: 36515804 DOI: 10.1007/s11262-022-01963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Avian influenza viruses (AIVs) are influenza A viruses, of which subtypes H1, H2 and H3 are highly transmissible in poultry and have the risk of transmission to human as well. It is important to establish an accurate, sensitive and convenient means of virus detection. In this study, we developed a multiplex real-time RT-PCR assay based on conserved sequences of the virus hemagglutinin and matrix, and designed primers and probes for the simultaneous and rapid detection of AIV subtypes H1, H2 and H3. We used different subtypes of AIVs and other avian respiratory viruses for evaluation of the specificity of this method. The results showed good sensitivity, specificity and reproducibility. The detection limit was 10-100 copies per reaction. The method also achieved good concordance with the virus isolation method when compared to 81 poultry samples evaluated. It provides a new method for detecting mixed infections of AIVs.
Collapse
Affiliation(s)
- Sijing Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China
| | - Dalu Dong
- Hangzhou Biotest Biotech Co.,Ltd, 27 Tuyi Road, Cangqian Street, Yuhang District, Hangzhou, 311121, Zhejiang, China
| | - Danna Wu
- Hangzhou Biotest Biotech Co.,Ltd, 27 Tuyi Road, Cangqian Street, Yuhang District, Hangzhou, 311121, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China
| | - Chunsheng Ye
- Hangzhou Biotest Biotech Co.,Ltd, 27 Tuyi Road, Cangqian Street, Yuhang District, Hangzhou, 311121, Zhejiang, China.
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| |
Collapse
|
2
|
Xiao Y, Yang F, Liu F, Yao H, Wu N, Wu H. Development and application of a real-time RT-PCR assay to rapidly detect H2 subtype avian influenza A viruses. J Vet Diagn Invest 2021; 33:577-581. [PMID: 33618630 DOI: 10.1177/1040638721994810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The H2 subtypes of avian influenza A viruses (avian IAVs) have been circulating in poultry, and they have the potential to infect humans. Therefore, establishing a method to quickly detect this subtype is pivotal. We developed a TaqMan minor groove binder real-time RT-PCR assay that involved probes and primers based on conserved sequences of the matrix and hemagglutinin genes. The detection limit of this assay was as low as one 50% egg infectious dose (EID50)/mL per reaction. This assay is specific, sensitive, and rapid for detecting avian IAV H2 subtypes.
Collapse
Affiliation(s)
- Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
H2 influenza viruses: designing vaccines against future H2 pandemics. Biochem Soc Trans 2019; 47:251-264. [PMID: 30647144 DOI: 10.1042/bst20180602] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022]
Abstract
Influenza-related pathologies affect millions of people each year and the impact of influenza on the global economy and in our everyday lives has been well documented. Influenza viruses not only infect humans but also are zoonotic pathogens that infect various avian and mammalian species, which serve as viral reservoirs. While there are several strains of influenza currently circulating in animal species, H2 influenza viruses have a unique history and are of particular concern. The 1957 'Asian Flu' pandemic was caused by H2N2 influenza viruses and circulated among humans from 1957 to 1968 before it was replaced by viruses of the H3N2 subtype. This review focuses on avian influenza viruses of the H2 subtype and the role these viruses play in human infections. H2 influenza viral infections in humans would present a unique challenge to medical and scientific researchers. Much of the world's population lacks any pre-existing immunity to the H2N2 viruses that circulated 50-60 years ago. If viruses of this subtype began circulating in the human population again, the majority of people alive today would have no immunity to H2 influenza viruses. Since H2N2 influenza viruses have effectively circulated in people in the past, there is a need for additional research to characterize currently circulating H2 influenza viruses. There is also a need to stockpile vaccines that are effective against both historical H2 laboratory isolates and H2 viruses currently circulating in birds to protect against a future pandemic.
Collapse
|
4
|
In Vitro Neutralization Is Not Predictive of Prophylactic Efficacy of Broadly Neutralizing Monoclonal Antibodies CR6261 and CR9114 against Lethal H2 Influenza Virus Challenge in Mice. J Virol 2017; 91:JVI.01603-17. [PMID: 29046448 DOI: 10.1128/jvi.01603-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses of the H1N1, H2N2, and H3N2 subtypes have caused previous pandemics. H2 influenza viruses represent a pandemic threat due to continued circulation in wild birds and limited immunity in the human population. In the event of a pandemic, antiviral agents are the mainstay for treatment, but broadly neutralizing antibodies (bNAbs) may be a viable alternative for short-term prophylaxis or treatment. The hemagglutinin stem binding bNAbs CR6261 and CR9114 have been shown to protect mice from severe disease following challenge with H1N1 and H5N1 and with H1N1, H3N2, and influenza B viruses, respectively. Early studies with CR6261 and CR9114 showed weak in vitro activity against human H2 influenza viruses, but the in vivo efficacy against H2 viruses is unknown. Therefore, we evaluated these antibodies against human- and animal-origin H2 viruses A/Ann Arbor/6/1960 (H2N2) (AA60) and A/swine/MO/4296424/06 (H2N3) (Sw06). In vitro, CR6261 neutralized both H2 viruses, while CR9114 only neutralized Sw06. To evaluate prophylactic efficacy, mice were given CR6261 or CR9114 and intranasally challenged 24 h later with lethal doses of AA60 or Sw06. Both antibodies reduced mortality, weight loss, airway inflammation, and pulmonary viral load. Using engineered bNAb variants, antibody-mediated cell cytotoxicity reporter assays, and Fcγ receptor-deficient (Fcer1g-/-) mice, we show that the in vivo efficacy of CR9114 against AA60 is mediated by Fcγ receptor-dependent mechanisms. Collectively, these findings demonstrate the in vivo efficacy of CR6261 and CR9114 against H2 viruses and emphasize the need for in vivo evaluation of bNAbs.IMPORTANCE bNAbs represent a strategy to prevent or treat infection by a wide range of influenza viruses. The evaluation of these antibodies against H2 viruses is important because H2 viruses caused a pandemic in 1957 and could cross into humans again. We demonstrate that CR6261 and CR9114 are effective against infection with H2 viruses of both human and animal origin in mice, despite the finding that CR9114 did not display in vitro neutralizing activity against the human H2 virus. These findings emphasize the importance of in vivo evaluation and testing of bNAbs.
Collapse
|
5
|
Sarker RD, Giasuddin M, Chowdhury EH, Islam MR. Serological and virological surveillance of avian influenza virus in domestic ducks of the north-east region of Bangladesh. BMC Vet Res 2017. [PMID: 28623934 PMCID: PMC5474003 DOI: 10.1186/s12917-017-1104-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Wild waterfowl are considered as the natural reservoir for avian influenza (AI) viruses. Bangladesh has been experiencing highly pathogenic avian influenza (HPAI) outbreaks since 2007, mostly in chickens and occasionally in ducks. Ducks play an important role in the persistence and genetic recombination of AI viruses. This paper presents the results of serological and virological monitoring of AI in domestic ducks in 2013 in the north-east region of Bangladesh. Results A total of 871 and 662 serum samples and 909 and 302 pairs of cloacal and oropharyngeal swabs from domestic ducks of Mymensingh and Sylhet division, respectively, were analysed. Antibodies to type A influenza virus were detected by blocking ELISA in 60.73 and 47.73% serum samples of Mymensingh and Sylhet division, respectively. On haemagglutination-inhibition (HI) test 17.5% of ELISA positive serum samples were found to be seropositive to H5 avian influenza virus. Five cloacal swabs and one oropharyngeal swab were positive for M gene of type A influenza virus by real time RT-PCR (rRT-PCR), but all of them were negative for H5 influenza virus. Three of the six viruses were successfully characterized as H1N5, H2N5 and H7N5 subtype of AI virus, the other three remained uncharacterized. On sequencing and phylogenetic analysis the HA and NA genes were found to be of Eurasian avian lineage. The H7 virus had cleavage site motif of low pathogenic virus. Conclusions Low pathogenic avian influenza viruses were detected from apparently healthy domestic ducks. A small proportion of domestic ducks were found seropositive to H5 AI virus.
Collapse
Affiliation(s)
- Rahul Deb Sarker
- Department of Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Giasuddin
- National Reference Laboratory for Avian Influenza, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | | | | |
Collapse
|
6
|
Wu H, Peng X, Peng X, Cheng L, Wu N. Genetic and molecular characterization of a novel reassortant H2N8 subtype avian influenza virus isolated from a domestic duck in Zhejiang Province in China. Virus Genes 2016; 52:863-866. [PMID: 27379842 DOI: 10.1007/s11262-016-1368-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/22/2016] [Indexed: 01/03/2023]
Abstract
The circulation of the H2 subtype influenza viruses in domestic animals increases the risk of human exposure to these viruses. An H2N8 avian influenza virus (AIV) was isolated from a domestic duck during AIV surveillance of poultry in live poultry markets (LPMs) in Zhejiang Province, Eastern China, in 2013. The phylogenetic trees suggested that this strain is a novel reassortant virus derived from multiple AIV subtypes from aquatic birds and poultry in Eastern Asia. Although this reassortant strain exhibited low pathogenicity in mice, it was able to replicate in the lungs of the mice without prior adaptation. Continued surveillance of domestic ducks in LPMs is required for early detection of AIV outbreaks in poultry and humans.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
7
|
Wu H, Peng X, Peng X, Cheng L, Lu X, Jin C, Xie T, Yao H, Wu N. Genetic characterization of natural reassortant H4 subtype avian influenza viruses isolated from domestic ducks in Zhejiang province in China from 2013 to 2014. Virus Genes 2015; 51:347-355. [PMID: 26350888 DOI: 10.1007/s11262-015-1245-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/01/2015] [Indexed: 11/25/2022]
Abstract
The H4 subtype of the influenza virus was first isolated in 1999 from pigs with pneumonia in Canada. H4 avian influenza viruses (AIVs) are able to cross the species barrier to infect humans. In order to better understand the genetic relationships between H4 AIV strains circulating in Eastern China and other AIV strains from Asia, a survey of domestic ducks in live poultry markets was undertaken in Zhejiang province from 2013 to 2014. In this study, 23 H4N2 (n = 14) and H4N6 (n = 9) strains were isolated from domestic ducks, and all eight gene segments of these strains were sequenced and compared to reference AIV strains available in GenBank. The isolated strains clustered primarily within the Eurasian lineage. No mutations associated with adaption to mammalian hosts or drug resistance was observed. The H4 reassortant strains were found to be of low pathogenicity in mice and able to replicate in the lung of the mice without prior adaptation. Continued surveillance is required, given the important role of domestic ducks in reassortment events leading to new AIVs.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Tiansheng Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
8
|
Ma MJ, Yang XX, Qian YH, Zhao SY, Hua S, Wang TC, Chen SH, Ma GY, Sang XY, Liu LN, Wu AP, Jiang TJ, Gao YW, Gray GC, Zhao T, Ling X, Wang JL, Lu B, Qian J, Cao WC. Characterization of a novel reassortant influenza A virus (H2N2) from a domestic duck in Eastern China. Sci Rep 2014; 4:7588. [PMID: 25533850 PMCID: PMC4274511 DOI: 10.1038/srep07588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/28/2014] [Indexed: 11/21/2022] Open
Abstract
While H2N2 viruses have been sporadically isolated from wild and domestic birds, H2N2 viruses have not been detected among human populations since 1968. Should H2N2 viruses adapt to domestic poultry they may pose a risk of infection to people, as most anyone born after 1968 would likely be susceptible to their infection. We report the isolation of a novel influenza A virus (H2N2) cultured in 2013 from a healthy domestic duck at a live poultry market in Wuxi City, China. Sequence data revealed that the novel H2N2 virus was similar to Eurasian avian lineage avian influenza viruses, the virus had been circulating for ≥ two years among poultry, had an increase in α2,6 binding affinity, and was not highly pathogenic. Approximately 9% of 100 healthy chickens sampled from the same area had elevated antibodies against the H2 antigen. Fortunately, there was sparse serological evidence that the virus was infecting poultry workers or had adapted to infect other mammals. These findings suggest that a novel H2N2 virus has been circulating among domestic poultry in Wuxi City, China and has some has increased human receptor affinity. It seems wise to conduct better surveillance for novel influenza viruses at Chinese live bird markets.
Collapse
Affiliation(s)
- Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Xiao-Xian Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
- School of Public Health, Central South University, Changsha, Hunan, 410000 P. R. China
| | - Yan-Hua Qian
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, P. R. China
| | - Si-Yan Zhao
- Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, P. R. China
| | - Sha Hua
- Key Laboratory of Protein and Peptide Pharmaceutical, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tie-Cheng Wang
- Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, P. R. China
| | - Shan-Hui Chen
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, P. R. China
| | - Guang-Yuan Ma
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, P. R. China
| | - Xiao-Yu Sang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Lin-Na Liu
- Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, P. R. China
| | - Ai-Ping Wu
- Key Laboratory of Protein and Peptide Pharmaceutical, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Tai-Jiao Jiang
- Key Laboratory of Protein and Peptide Pharmaceutical, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yu-Wei Gao
- Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, P. R. China
| | - Gregory C. Gray
- Duke Infectious Disease & Duke Health Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Xia Ling
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, P. R. China
| | - Jing-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Bing Lu
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, P. R. China
| | - Jun Qian
- Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, P. R. China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
- School of Public Health, Central South University, Changsha, Hunan, 410000 P. R. China
| |
Collapse
|