1
|
Wei KJ, Jiang AM, Jiang S, Huang YJ, Jiang SY, Su XL, Tettey CK, Wang XQ, Tang W, Cheng DJ. New isolate of sweet potato virus 2 from Ipomoea nil: molecular characterization, codon usage bias, and phylogenetic analysis based on complete genome. Virol J 2024; 21:222. [PMID: 39300471 PMCID: PMC11412058 DOI: 10.1186/s12985-024-02500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Viral diseases of sweet potatoes are causing severe crop losses worldwide. More than 30 viruses have been identified to infect sweet potatoes among which the sweet potato latent virus (SPLV), sweet potato mild speckling virus (SPMSV), sweet potato virus G (SPVG) and sweet potato virus 2 (SPV2) have been recognized as distinct species of the genus Potyvirus in the family Potyviridae. The sweet potato virus 2 (SPV2) is a primary pathogen affecting sweet potato crops. METHODS In this study, we detected an SPV2 isolate (named SPV2-LN) in Ipomoea nil in China. The complete genomic sequence of SPV2-LN was obtained using sequencing of small RNAs, RT-PCR, and RACE amplification. The codon usage, phylogeny, recombination analysis and selective pressure analysis were assessed on the SPV2-LN genome. RESULTS The complete genome of SPV2-LN consisted of 10,606 nt (GenBank No. OR842902), encoding 3425 amino acids. There were 28 codons in the SPV2-LN genome with a relative synonymous codon usage (RSCU) value greater than 1, of which 21 end in A/U. Among the 12 proteins of SPV2, P3 and P3N-PIPO exhibited the highest variability in their amino acid sequences, while P1 was the most conserved, with an amino acid sequence identity of 87-95.3%. The phylogenetic analysis showed that 21 SPV2 isolates were clustered into four groups, and SPV2-LN was clustered together with isolate yu-17-47 (MK778808) in group IV. Recombination analysis indicated no major recombination sites in SPV2-LN. Selective pressure analysis showed dN/dS of the 12 proteins of SPV2 were less than 1, indicating that all were undergoing negative selection, except for P1N-PISPO. CONCLUSION This study identified a sweet potato virus, SPV2-LN, in Ipomoea nil. Sequence identities and genome analysis showed high similarity between our isolate and a Chinese isolate, yu-17-47, isolated from sweet potato. These results will provide a theoretical basis for understanding the genetic evolution and viral spread of SPV2.
Collapse
Affiliation(s)
- Kun-Jiang Wei
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Ai-Ming Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Shuo Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Yang-Jian Huang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Song-Yu Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Xiao-Ling Su
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Carlos Kwesi Tettey
- Department of Molecular Biology and Biotechnology, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Xiao-Qiang Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, 221131, China.
| | - De-Jie Cheng
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China.
| |
Collapse
|
2
|
Mumo NN, Ateka EM, Mamati EG, Rimberia FK, Asudi GO, Machuka E, Njuguna JN, Stomeo F, Pelle R. Occurrence of a Novel Strain of Moroccan Watermelon Mosaic Virus Infecting Pumpkins in Kenya. PLANT DISEASE 2022; 106:39-45. [PMID: 34279983 DOI: 10.1094/pdis-02-21-0359-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Potyvirus Moroccan watermelon mosaic virus (MWMV) naturally infects and severely threatens production of cucurbits and papaya. In this study, we identified and characterized MWMV isolated from pumpkin (Cucurbita moschata) intercropped with MWMV-infected papaya plants through next-generation sequencing (NGS) and Sanger sequencing approaches. Complete MWMV genome sequences were obtained from two pumpkin samples through NGS and validated using Sanger sequencing. The isolates shared 83.4 to 83.7% nucleotide (nt) and 92.3 to 95.1% amino acid (aa) sequence identities in the coat protein and 79.5 to 79.9% nt and 89.2 to 89.7% aa identities in the polyprotein with papaya isolates of MWMV. Phylogenetic analysis using complete polyprotein nt sequences revealed the clustering of both pumpkin isolates of MWMV with corresponding sequences of cucurbit isolates of the virus from other parts of Africa and the Mediterranean regions, distinct from a clade formed by papaya isolates. Through sap inoculation, a pumpkin isolate of MWMV was pathogenic on zucchini (Cucurbita pepo), watermelon (Citrullus lanatus), and cucumber (Cucumis sativus) but not on papaya. Conversely, the papaya isolate of MWMV was nonpathogenic on pumpkin, watermelon, and cucumber, but it infected zucchini. The results suggest the occurrence of two strains of MWMV in Kenya having different biological characteristics associated with the host specificity.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Naomi Nzilani Mumo
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Elijah Miinda Ateka
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Edward George Mamati
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Fredah K Rimberia
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - George Ochieng' Asudi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Eunice Machuka
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Joyce Njoki Njuguna
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Francesca Stomeo
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Roger Pelle
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| |
Collapse
|
3
|
Lu G, Wang Z, Xu F, Pan YB, Grisham MP, Xu L. Sugarcane Mosaic Disease: Characteristics, Identification and Control. Microorganisms 2021; 9:microorganisms9091984. [PMID: 34576879 PMCID: PMC8468687 DOI: 10.3390/microorganisms9091984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/25/2023] Open
Abstract
Mosaic is one of the most important sugarcane diseases, caused by single or compound infection of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and/or Sugarcane streak mosaic virus (SCSMV). The compound infection of mosaic has become increasingly serious in the last few years. The disease directly affects the photosynthesis and growth of sugarcane, leading to a significant decrease in cane yield and sucrose content, and thus serious economic losses. This review covers four aspects of sugarcane mosaic disease management: first, the current situation of sugarcane mosaic disease and its epidemic characteristics; second, the pathogenicity and genetic diversity of the three viruses; third, the identification methods of mosaic and its pathogen species; and fourth, the prevention and control measures for sugarcane mosaic disease and potential future research focus. The review is expected to provide scientific literature and guidance for the effective prevention and control of mosaic through resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Guilong Lu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
| | - Zhoutao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
| | - Yong-Bao Pan
- USDA-ARS, Sugarcane Research Unit, Houma, LA 70360, USA; (Y.-B.P.); (M.P.G.)
| | - Michael P. Grisham
- USDA-ARS, Sugarcane Research Unit, Houma, LA 70360, USA; (Y.-B.P.); (M.P.G.)
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
- Correspondence:
| |
Collapse
|
4
|
Extensive recombination challenges the utility of Sugarcane mosaic virus phylogeny and strain typing. Sci Rep 2019; 9:20067. [PMID: 31882631 PMCID: PMC6934591 DOI: 10.1038/s41598-019-56227-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022] Open
Abstract
Sugarcane mosaic virus (SCMV) is distributed worldwide and infects three major crops: sugarcane, maize, and sorghum. The impact of SCMV is increased by its interaction with Maize chlorotic mottle virus which causes the synergistic maize disease maize lethal necrosis. Here, we characterised maize lethal necrosis-infected maize from multiple sites in East Africa, and found that SCMV was present in all thirty samples. This distribution pattern indicates that SCMV is a major partner virus in the East African maize lethal necrosis outbreak. Consistent with previous studies, our SCMV isolates were highly variable with several statistically supported recombination hot- and cold-spots across the SCMV genome. The recombination events generate conflicting phylogenetic signals from different fragments of the SCMV genome, so it is not appropriate to group SCMV genomes by simple similarity.
Collapse
|
5
|
Status and Epidemiology of Maize Lethal Necrotic Disease in Northern Tanzania. Pathogens 2019; 9:pathogens9010004. [PMID: 31861452 PMCID: PMC7168672 DOI: 10.3390/pathogens9010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022] Open
Abstract
Sustainable control of plant diseases requires a good understanding of the epidemiological aspects such as the biology of the causal pathogens. In the current study, we used RT-PCR and Next Generation Sequencing (NGS) to contribute to the characterization of maize lethal necrotic (MLN) viruses and to identify other possible viruses that could represent a future threat in maize production in Tanzania. RT-PCR screening for Maize Chlorotic Mottle Virus (MCMV) detected the virus in the majority (97%) of the samples (n=223). Analysis of a subset (n=48) of the samples using NGS-Illumina Miseq detected MCMV and Sugarcane Mosaic Virus (SCMV) at a co-infection of 62%. The analysis further detected Maize streak virus with an 8% incidence in samples where MCMV and SCMV were also detected. In addition, signatures of Maize dwarf mosaic virus, Sorghum mosaic virus, Maize yellow dwarf virus-RMV and Barley yellow dwarf virus were detected with low coverage. Phylogenetic analysis of the viral coat protein showed that isolates of MCMV and SCMV were similar to those previously reported in East Africa and Hebei, China. Besides characterization, we used farmers' interviews and direct field observations to give insights into MLN status in different agro-ecological zones (AEZs) in Kilimanjaro, Mayara, and Arusha. Through the survey, we showed that the prevalence of MLN differed across regions (P = 0.0012) and villages (P < 0.0001) but not across AEZs (P > 0.05). The study shows changing MLN dynamicsin Tanzania and emphasizes the need for regional scientists to utilize farmers' awareness in managing the disease.
Collapse
|
6
|
Moradi Z, Mehrvar M, Nazifi E. Genetic diversity and biological characterization of sugarcane streak mosaic virus isolates from Iran. Virusdisease 2018; 29:316-323. [PMID: 30159366 DOI: 10.1007/s13337-018-0461-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/29/2018] [Indexed: 11/26/2022] Open
Abstract
Sugarcane streak mosaic virus (SCSMV; genus Poacevirus, family Potyviridae) is a major causal agent of sugarcane mosaic disease in Asia. A survey of SCSMV was conducted in cultivated fields in Khuzestan province, southwestern Iran. Sixty-five sugarcane leaf samples showing mosaic symptoms were collected and investigated by RT-PCR. Almost one-fourth of the samples were found to be infected by SCSMV. To verify molecular variability, 12 SCSMV isolates were sequenced and analyzed by comparing partial NIb-CP gene sequences. The nucleotide identity among Iranian isolates was 83.1-99.8%, indicating high nucleotide variability, while amino acid identity was 95.2-100%, which suggesting selection for amino acid conservation. They shared nucleotide identities of 76.2-99.1% with those of other SCSMV isolates available in GenBank, the highest with isolates from Pakistan (PAK), India (IND671) and China (M117, KT257289). Further analysis was conducted based on complete CI coding region to gain more insight into the phylogenetic relationships of Iranian SCSMV compared to those from other Asian countries. Iranian isolates shared identities of 79.8-89.0% (nucleotide) and 94.8-98.6% (amino acid) with those from other geographical regions in the CI gene. The highest nucleotide identity of Iranian isolates was with isolates PAK (Pakistan), M121 (JQ975096, China) and IND671 (India), respectively. The phylogenetic trees (based on CI and NIb-CP) revealed the segregation of SCSMV isolates into two major divergent evolutionary lineages that reflect geographical origin of the isolates (with minor exception). Phylogenetic analyses grouped Iranian SCSMV isolates together with isolates from Pakistan, India and just one Chinese isolate in group II. Biological results showed that Iranian SCSMV isolates infect sugarcane, sorghum, maize and some wild grasses, causing mosaic symptoms on the leaves.
Collapse
Affiliation(s)
- Zohreh Moradi
- 1Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Mehrvar
- 1Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ehsan Nazifi
- 2Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
7
|
Moradi Z, Nazifi E, Mehrvar M. Occurrence and Evolutionary Analysis of Coat Protein Gene Sequences of Iranian Isolates of Sugarcane mosaic virus. THE PLANT PATHOLOGY JOURNAL 2017; 33:296-306. [PMID: 28592948 PMCID: PMC5461048 DOI: 10.5423/ppj.oa.10.2016.0219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 05/31/2023]
Abstract
Sugarcane mosaic virus (SCMV) is one of the most damaging viruses infecting sugarcane, maize and some other graminaceous species around the world. To investigate the genetic diversity of SCMV in Iran, the coat protein (CP) gene sequences of 23 SCMV isolates from different hosts were determined. The nucleotide sequence identity among Iranian isolates was more than 96%. They shared nucleotide identities of 75.5-99.9% with those of other SCMV isolates available in GenBank, the highest with the Egyptian isolate EGY7-1 (97.5-99.9%). The results of phylogenetic analysis suggested five divergent evolutionary lineages that did not completely reflect the geographical origin or host plant of the isolates. Population genetic analysis revealed greater between-group than within-group evolutionary divergence values, further supporting the results of the phylogenetic analysis. Our results indicated that natural selection might have contributed to the evolution of isolates belonging to the five identified SCMV groups, with infrequent genetic exchanges occurring between them. Phylogenetic analyses and the estimation of genetic distance indicated that Iranian isolates have low genetic diversity. No recombination was found in the CP cistron of Iranian isolates and the CP gene was under negative selection. These findings provide a comprehensive analysis of the population structure and driving forces for the evolution of SCMV with implications for global exchange of sugarcane germplasm. Gene flow, selection and somehow homologous recombination were found to be the important evolutionary factors shaping the genetic structure of SCMV populations.
Collapse
Affiliation(s)
- Zohreh Moradi
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-1163,
Iran
| | - Ehsan Nazifi
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar 47416-95447,
Iran
| | - Mohsen Mehrvar
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-1163,
Iran
| |
Collapse
|
8
|
Iranian johnsongrass mosaic virus: the complete genome sequence, molecular and biological characterization, and comparison of coat protein gene sequences. Virus Genes 2016; 53:77-88. [PMID: 27632283 DOI: 10.1007/s11262-016-1389-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
Iranian johnsongrass mosaic virus (IJMV) is one of the most prevalent viruses causing maize mosaic disease in Iran. An IJMV isolate, Maz-Bah, was obtained from the maize showing mosaic symptoms in Mazandaran, north of Iran. The complete genomic sequence of Maz-Bah is 9544 nucleotides, excluding the poly(A) tail. It contains one single open reading frame of 9165 nucleotides and encodes a large polyprotein of 3054 amino acids, flanked by a 5'-untranslated region (UTR) of 143 nucleotides and a 3'-UTR of 236 nucleotides. The entire genomic sequence of Maz-Bah isolate shares identities of 84.9 and 94.2 % with the IJMV (Shz) isolate, the lone complete genome sequence available in the GenBank at the nucleotide (nt) and deduced amino acid (aa) levels, respectively. The whole genome sequences share identities of 51.5-69.8 and 44.9-74.3 % with those of other Sugarcane mosaic virus (SCMV) subgroup potyviruses at nt and aa levels, respectively. In phylogenetic trees based on the multiple alignments of the entire nt and aa sequences, IJMV isolates formed a separate sublineage of the tree with potyviruses infecting monocotyledons of cereals, indicating that IJMV is a member of SCMV subgroup of potyviruses. IJMV is most closely related to Sorghum mosaic virus and Maize dwarf mosaic virus and less closely related to the Johnsongrass mosaic virus and Cocksfoot streak virus. To further investigate the genetic relationship of IJMV, 9 other isolates from different hosts were cloned and sequenced. The identity of IJMV CP nt and aa sequences of 11 Iranian isolates ranged from 86.4 to 99.8 % and 90.5 to 99.7 %, respectively, indicating a high nt variability in CP gene. Furthermore, in the CP-based phylogenetic tree, IJMV isolates were clustered together with a maize potyvirus described as Zea mosaic virus from Israel (with 86-89 % nt identity), indicating that both isolates probably are the strains of the same virus.
Collapse
|
9
|
Xie X, Chen W, Fu Q, Zhang P, An T, Cui A, An D. Molecular Variability and Distribution of Sugarcane Mosaic Virus in Shanxi, China. PLoS One 2016; 11:e0151549. [PMID: 26987060 PMCID: PMC4795778 DOI: 10.1371/journal.pone.0151549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/01/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Sugarcane mosaic virus (SCMV) is responsible for large-scale economic losses in the global production of sugarcane, maize, sorghum, and some other graminaceous species. To understand the evolutionary mechanism of SCMV populations, this virus was studied in Shanxi, China. A total of 86 maize leaf samples (41 samples in 2012 and 45 samples in 2013) were collected from 4 regions of Shanxi. RESULTS Double-antibody sandwich (DAS)-ELISA and RT-PCR showed 59 samples (30 samples in 2012 and 29 samples in 2013) to be positive for SCMV, from which 10 new isolates of SCMV were isolated and sequenced. The complete genomes of these isolates are 9610 nt long, including the 5' and 3' non-coding regions, and encode a 3063-amino acid polyprotein. Phylogenetic analyses revealed that 24 SCMV isolates could be divided on the basis of the whole genome into 2 divergent evolutionary groups, which were associated with the host species. Among the populations, 15 potential recombination events were identified. The selection pressure on the genes of these SCMV isolates was also calculated. The results confirmed that all the genes were under negative selection. CONCLUSIONS Negative selection and recombination appear to be important evolutionary factors shaping the genetic structure of these SCMV isolates. SCMV is distributed widely in China and exists as numerous strains with distinct genetic diversity. Our findings will provide a foundation for evaluating the epidemiological characteristics of SCMV in China and will be useful in designing long-term, sustainable management strategies for SCMV.
Collapse
Affiliation(s)
- Xiansheng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen, Shanxi, China
| | - Wei Chen
- College of Life Science, Shanxi Normal University, Linfen, Shanxi, China
| | - Qiang Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Penghui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianci An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Aimin Cui
- Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen, Shanxi, China
| | - Derong An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
10
|
The complete genome sequences of two naturally occurring recombinant isolates of Sugarcane mosaic virus from Iran. Virus Genes 2016; 52:270-80. [PMID: 26905544 DOI: 10.1007/s11262-016-1302-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/08/2016] [Indexed: 01/13/2023]
Abstract
Sugarcane mosaic virus (SCMV) is the most prevalent virus causing sugarcane mosaic and maize dwarf mosaic diseases. Here, we presented the first two complete genomic sequences of Iranian SCMV isolates, NRA and ZRA from sugarcane and maize. The complete genome sequences of NRA and ZRA were, respectively, 9571 and 9572 nucleotides (nt) in length, excluding the 3'-terminal poly(A) tail. Both isolates contained a 5'-untranslated region (UTR) of 149 nt, an open reading frame of 9192 nt encoding a polyprotein of 3063 amino acids (aa), and 3'-UTR of 230 nt for NRA and 231 nt for ZRA. SCMV-NRA and -ZRA genome nucleotide sequences were 97.3 % identical and shared nt identities of 79.1-92 % with those of other 21 SCMV isolates available in the GenBank, highest with the isolate Bris-A (AJ278405) (92 and 91.7 %) from Australia. When compared for separate genes, most of their genes shared the highest identities with Australian and Argentinean isolates. Phylogenetic analysis of the complete genomic sequences reveals that SCMV can be clustered to three groups. Both NRA and ZRA were clustered with sugarcane isolates from Australia and Argentina in group III but formed a separate sublineage. Recombination analysis showed that both isolates were intraspecific recombinants, and represented two novel recombination patterns of SCMV (in the P1 coding region). NRA had six recombination sites within the P1, HC-Pro, CI, NIa-Vpg, and NIa-pro coding regions, while ZRA had four within the P1, HC-Pro, NIa-Pro, and NIb coding regions.
Collapse
|