1
|
Villanueva BHA, Chen JY, Lin PJ, Minh H, Le VP, Tyan YC, Chuang JP, Chuang KP. Surveillance of Parrot Bornavirus in Taiwan Captive Psittaciformes. Viruses 2024; 16:805. [PMID: 38793686 PMCID: PMC11125704 DOI: 10.3390/v16050805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Parrot bornavirus (PaBV) is an infectious disease linked with proventricular dilatation disease (PDD) with severe digestive and neurological symptoms affecting psittacine birds. Despite its detection in 2008, PaBV prevalence in Taiwan remains unexplored. Taiwan is one of the leading psittacine bird breeders; hence, understanding the distribution of PaBV aids preventive measures in controlling spread, early disease recognition, epidemiology, and transmission dynamics. Here, we aimed to detect the prevalence rate of PaBV and assess its genetic variation in Taiwan. Among 124 psittacine birds tested, fifty-seven were PaBV-positive, a prevalence rate of 45.97%. Most of the PaBV infections were adult psittacine birds, with five birds surviving the infection, resulting in a low survival rate (8.77%). A year of parrot bornavirus surveillance presented a seasonal pattern, with peak PaBV infection rates occurring in the spring season (68%) and the least in the summer season (25%), indicating the occurrence of PaBV infections linked to seasonal factors. Histopathology reveals severe meningoencephalitis in the cerebellum and dilated cardiomyopathy of the heart in psittacine birds who suffered from PDD. Three brain samples underwent X/P gene sequencing, revealing PaBV-2 and PaBV-4 viral genotypes through phylogenetic analyses. This underscores the necessity for ongoing PaBV surveillance and further investigation into its pathophysiology and transmission routes.
Collapse
Affiliation(s)
- Brian Harvey Avanceña Villanueva
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Jin-Yang Chen
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Pei-Ju Lin
- Livestock Disease Control Center of Chiayi County, Chiayi 612, Taiwan;
- Department of Veterinary Medicine, National Chiayi University, Chiayi 600, Taiwan
| | - Hoang Minh
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam;
| | - Van Phan Le
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam;
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jen-Pin Chuang
- Chiayi Hospital, Ministry of Health and Welfare, Chiayi 600, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Kuo-Pin Chuang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Companion Animal Research Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
2
|
Rubbenstroth D. Avian Bornavirus Research—A Comprehensive Review. Viruses 2022; 14:v14071513. [PMID: 35891493 PMCID: PMC9321243 DOI: 10.3390/v14071513] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Avian bornaviruses constitute a genetically diverse group of at least 15 viruses belonging to the genus Orthobornavirus within the family Bornaviridae. After the discovery of the first avian bornaviruses in diseased psittacines in 2008, further viruses have been detected in passerines and aquatic birds. Parrot bornaviruses (PaBVs) possess the highest veterinary relevance amongst the avian bornaviruses as the causative agents of proventricular dilatation disease (PDD). PDD is a chronic and often fatal disease that may engulf a broad range of clinical presentations, typically including neurologic signs as well as impaired gastrointestinal motility, leading to proventricular dilatation. It occurs worldwide in captive psittacine populations and threatens private bird collections, zoological gardens and rehabilitation projects of endangered species. In contrast, only little is known about the pathogenic roles of passerine and waterbird bornaviruses. This comprehensive review summarizes the current knowledge on avian bornavirus infections, including their taxonomy, pathogenesis of associated diseases, epidemiology, diagnostic strategies and recent developments on prophylactic and therapeutic countermeasures.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| |
Collapse
|
3
|
Pinto MC, Craveiro H, Johansson Wensman J, Carvalheira J, Berg M, Thompson G. Bornaviruses in naturally infected Psittacus erithacus in Portugal: insights of molecular epidemiology and ecology. Infect Ecol Epidemiol 2019; 9:1685632. [PMID: 31741722 PMCID: PMC6844444 DOI: 10.1080/20008686.2019.1685632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/01/2019] [Indexed: 10/30/2022] Open
Abstract
Background: The genus Orthobornavirus comprises non-segmented, negative-stranded RNA viruses able to infect humans, mammals, reptiles and various birds. Parrot bornavirus 1 to 8 (PaBV-1 to 8) causes neurological and/or gastrointestinal syndromes and death on psittacines. We aimed to identify and to produce epidemiologic knowledge about the etiologic agent associated with a death of two female Psittacus erithacus (grey parrot). Methods and Results: Both parrots were submitted for a complete standardised necropsy. Tissue samples were analysed by PCR. The findings in necropsy were compatible with bornavirus infection. Analysis revealed PaBV-4 related with genotypes detected in captive and in wild birds. The N and X proteins of PaBV-4 were more related to avian bornaviruses, while phosphoprotein was more related to variegated squirrel bornavirus 1 (VSBV-1). Within the P gene/phosphoprotein a highly conserved region between and within bornavirus species was found. Conclusions: Portugal is on the routes of the intensive world trade of psittacines. Broad screening studies are required to help understanding the role of wild birds in the emergence and spread of pathogenic bornaviruses. PaBV-4 phosphoprotein is closer to VSBV-1 associated with lethal encephalitis in humans than with some of the avian bornaviruses. The highly conserved P gene/phosphoprotein region is a good target for molecular diagnostics screenings.
Collapse
Affiliation(s)
- Marlene Cavaleiro Pinto
- Laboratory of Microbiology and Infectious Diseases, Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Hélder Craveiro
- Department of exotic animals, Veterinary Hospital Baixo Vouga, Águeda, Portugal.,Department of Veterinary Medicine, Vasco da Gama University School, Coimbra, Portugal
| | - Jonas Johansson Wensman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Júlio Carvalheira
- Department of Population Studies, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Mikael Berg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gertrude Thompson
- Laboratory of Microbiology and Infectious Diseases, Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| |
Collapse
|
4
|
From nerves to brain to gastrointestinal tract: A time-based study of parrot bornavirus 2 (PaBV-2) pathogenesis in cockatiels (Nymphicus hollandicus). PLoS One 2017; 12:e0187797. [PMID: 29121071 PMCID: PMC5679548 DOI: 10.1371/journal.pone.0187797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/26/2017] [Indexed: 11/20/2022] Open
Abstract
Parrot bornaviruses (PaBVs) are the causative agents of proventricular dilatation disease, however key aspects of its pathogenesis, such as route of infection, viral spread and distribution, and target cells remain unclear. Our study aimed to track the viral spread and lesion development at 5, 10, 20, 25, 35, 40, 60, 80, 95 and 114 dpi using histopathology, immunohistochemistry, and RT-PCR. After intramuscular inoculation of parrot bornavirus 2 (PaBV-2) in the pectoral muscle of cockatiels, this virus was first detected in macrophages and lymphocytes in the inoculation site and adjacent nerves, then reached the brachial plexus, centripetally spread to the thoracic segment of the spinal cord, and subsequently invaded the other spinal segments and brain. After reaching the central nervous system (CNS), PaBV-2 centrifugally spread out the CNS to the ganglia in the gastrointestinal (GI) system, adrenal gland, heart, and kidneys. At late points of infection, PaBV-2 was not only detected in nerves and ganglia but widespread in the smooth muscle and/or scattered epithelial cells of tissues such as crop, intestines, proventriculus, kidneys, skin, and vessels. Despite the hallmark lesion of PaBVs infection being the dilation of the proventriculus, our results demonstrate PaBV-2 first targets the CNS, before migrating to peripheral tissues such as the GI system.
Collapse
|
5
|
EFSA Panel on Animal Health and Welfare (AHAW), More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin‐Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán‐Beck B, Kohnle L, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Borna disease. EFSA J 2017; 15:e04951. [PMID: 32625602 PMCID: PMC7009998 DOI: 10.2903/j.efsa.2017.4951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of Borna disease to be listed, Article 9 for the categorisation of Borna disease according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to Borna disease. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, Borna disease cannot be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL because there was no compliance on criterion 5 A(v). Consequently, the assessment on compliance of Borna disease with the criteria as in Annex IV of the AHL, for the application of the disease prevention and control rules referred to in Article 9(1) is not applicable, as well as which animal species can be considered to be listed for Borna disease according to Article 8(3) of the AHL.
Collapse
|
6
|
Rubbenstroth D, Schmidt V, Rinder M, Legler M, Twietmeyer S, Schwemmer P, Corman VM. Phylogenetic Analysis Supports Horizontal Transmission as a Driving Force of the Spread of Avian Bornaviruses. PLoS One 2016; 11:e0160936. [PMID: 27537693 PMCID: PMC4990238 DOI: 10.1371/journal.pone.0160936] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 07/27/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Avian bornaviruses are a genetically diverse group of viruses initially discovered in 2008. They are known to infect several avian orders. Bornaviruses of parrots and related species (Psittaciformes) are causative agents of proventricular dilatation disease, a chronic and often fatal neurologic disease widely distributed in captive psittacine populations. Although knowledge has considerably increased in the past years, many aspects of the biology of avian bornaviruses are still undiscovered. In particular, the precise way of transmission remains unknown. AIMS AND METHODS In order to collect further information on the epidemiology of bornavirus infections in birds we collected samples from captive and free-ranging aquatic birds (n = 738) and Passeriformes (n = 145) in Germany and tested them for the presence of bornaviruses by PCR assays covering a broad range of known bornaviruses. We detected aquatic bird bornavirus 1 (ABBV-1) in three out of 73 sampled free-ranging mute swans (Cygnus olor) and one out of 282 free-ranging Eurasian oystercatchers (Haematopus ostralegus). Canary bornavirus 1 (CnBV-1), CnBV-2 and CnBV-3 were detected in four, six and one out of 48 captive common canaries (Serinus canaria forma domestica), respectively. In addition, samples originating from 49 bornavirus-positive captive Psittaciformes were used for determination of parrot bornavirus 2 (PaBV-2) and PaBV-4 sequences. Bornavirus sequences compiled during this study were used for phylogenetic analysis together with all related sequences available in GenBank. RESULTS OF THE STUDY Within ABBV-1, PaBV-2 and PaBV-4, identical or genetically closely related bornavirus sequences were found in parallel in various different avian species, suggesting that inter-species transmission is frequent relative to the overall transmission of these viruses. Our results argue for an important role of horizontal transmission, but do not exclude the additional possibility of vertical transmission. Furthermore we defined clearly separated sequence clusters within several avian bornaviruses, providing a basis for an improved interpretation of transmission events within and between wild bird populations and captive bird collections.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Institute for Virology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Herrmann-Herder Str. 11, D-79104, Freiburg, Germany
- * E-mail:
| | - Volker Schmidt
- Clinic for Birds and Reptiles, University of Leipzig, An den Tierkliniken 17, D-04103, Leipzig, Germany
| | - Monika Rinder
- Clinic for Birds, Reptiles, Amphibians and Ornamental Fish, Centre for Clinical Veterinary Medicine, University Ludwig Maximilian Munich, Sonnenstr. 18, D-85764, Oberschleißheim, Germany
| | - Marko Legler
- Clinic for Pets, Reptiles and pet and feral Birds, University of Veterinary Medicine Hannover, Bünteweg 9, D-30559, Hannover, Germany
| | - Sönke Twietmeyer
- Department of Research and Documentation, Eifel National Park, Urftseestraße 34, D-53937, Schleiden-Gemünd, Germany
| | - Phillip Schwemmer
- Research and Technology Centre Büsum, University of Kiel, Hafentörn 1, D-25761, Büsum, Germany
| | - Victor M. Corman
- Institute for Virology, University of Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|