1
|
Zhang X, Shi H, Li J, Wu X. Complete genome sequence of a novel virus isolated from the phytopathogenic fungus Ceratobasidium sp. AG-A strain SHX-YJLC-1. Arch Virol 2023; 168:241. [PMID: 37668772 DOI: 10.1007/s00705-023-05868-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/30/2023] [Indexed: 09/06/2023]
Abstract
A novel mycovirus, Ceratobasidium bipartite virus 1 (CBV1), was identified in Ceratobasidium sp. AG-A strain SHX-YJLC-1 isolated from diseased potato stems. The complete genome of CBV1 consists of two double-stranded RNA (dsRNA) segments: dsRNA1 (2311 bp) and dsRNA2 (1761 bp). dsRNA1 contains a single open reading frame (ORF1) encoding an RNA-dependent RNA polymerase (RdRp), while dsRNA2 contains a single ORF (ORF2) encoding a hypothetical protein (HP) with unknown function. BLASTp analysis revealed that RdRp (75.04%) and HP (61.86%) encoded by the two ORFs have the highest sequence similarity to their counterparts in Rhizoctonia solani dsRNA virus 11 (RsRV11). The genome organization and phylogenetic analysis indicated that the closest relatives to CBV1 are members of the proposed family "Bipartitiviridae". Based on the collective results, CBV1 is inferred to be a new member of the proposed family "Bipartitiviridae". This is the first report on the complete genome sequence of the novel bipartitivirus CBV1, which infects Ceratobasidium sp. AG-A strain SHX-YJLC-1.
Collapse
Affiliation(s)
- Xinyi Zhang
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Hao Shi
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Jinting Li
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Li Y, Xu P, Zhang L, Chen W, Ren Z, Yang G, Mo X. Complete nucleotide sequence of a novel mycovirus infecting Rhizoctonia fumigata AG-Ba isolate C-314 Baishi. Arch Virol 2022; 167:959-963. [PMID: 35112206 DOI: 10.1007/s00705-021-05269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/31/2021] [Indexed: 11/02/2022]
Abstract
The complete nucleotide sequence of a novel mycovirus, designated as "Rhizoctonia fumigata bipartite virus 1" (RfBV1), from Rhizoctonia fumigata AG-Ba isolate C-314 Baishi was determined. The genome of RfBV1 is composed of two double-stranded RNAs (dsRNA). dsRNA-1 (2311 bp) contains one open reading frame (ORF), which codes for the putative RNA-dependent RNA polymerase (RdRp) of the virus. dsRNA-2 (1690 bp) contains one ORF, which encodes a putative protein whose function is unknown. Phylogenetic analysis indicated that the RdRp of RfBV1 clustered with several unassigned bipartite viruses belonging to the CThTV-like viruses group, but not the family Amalgaviridae or Partitiviridae. Our study suggests that RfBV1 is a novel mycovirus related to the CThTV-like viruses.
Collapse
Affiliation(s)
- Yanqiong Li
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China.,College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.,Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Ping Xu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.,Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Lifang Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.,College of Bioresources and Food Engineering, Qujing Normal University, Qujing, 655011, Yunnan, China.,Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Wurong Chen
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Zhen Ren
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Genhua Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Xiaohan Mo
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China.
| |
Collapse
|
3
|
Sutela S, Vainio EJ. Virus population structure in the ectomycorrhizal fungi Lactarius rufus and L. tabidus at two forest sites in Southern Finland. Virus Res 2020; 285:197993. [PMID: 32360299 DOI: 10.1016/j.virusres.2020.197993] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 01/27/2023]
Abstract
Lactarius fungi belong to the Russulaceae family and have an important ecological role as ectomycorrhizal symbionts of coniferous and deciduous trees. Two Lactarius species, L. tabidus and L. rufus have been shown to harbor bisegmented dsRNA viruses belonging to an unclassified virus group including the mutualistic Curvularia thermal tolerance virus (CThTV). In this study, we characterized the first complete genome sequences of these viruses designated as Lactarius tabidus RNA virus 1 (LtRV1) and Lactarius rufus RNA virus 1 (LrRV1), both of which included two genome segments of 2241 and 2049 bp. We also analyzed spatial distribution and sequence diversity of the viruses in sixty host strains at two forest sites, and showed that the viruses are species-specific at sites where both host species co-occur. We also found that single virus isolates inhabited several different conspecific host strains, and were involved in persistent infections during up to eight years.
Collapse
Affiliation(s)
- Suvi Sutela
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland.
| | - Eeva J Vainio
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
4
|
Morozov SY, Solovyev AG, Kalinina NO, Taliansky ME. Double-Stranded RNAs in Plant Protection Against Pathogenic Organisms and Viruses in Agriculture. Acta Naturae 2019; 11:13-21. [PMID: 31993231 PMCID: PMC6977960 DOI: 10.32607/20758251-2019-11-4-13-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/29/2019] [Indexed: 11/24/2022] Open
Abstract
Recent studies have shown that plants are able to express the artificial genes responsible for the synthesis of double-stranded RNAs (dsRNAs) and hairpin double-stranded RNAs (hpRNAs), as well as uptake and process exogenous dsRNAs and hpRNAs to suppress the gene expression of plant pathogenic viruses, fungi, or insects. Both endogenous and exogenous dsRNAs are processed into small interfering RNAs (siRNAs) that can spread locally and systemically through the plant, enter pathogenic microorganisms, and induce RNA interference-mediated pathogen resistance in plants. There are numerous examples of the development of new biotechnological approaches to plant protection using transgenic plants and exogenous dsRNAs. This review summarizes new data on the use of transgenes and exogenous dsRNAs for the suppression of fungal and insect virulence genes, as well as viruses to increase the resistance of plants to these pathogens. We also analyzed the current ideas about the mechanisms of dsRNA processing and transport in plants.
Collapse
Affiliation(s)
- S. Y. Morozov
- International Laboratory «Resistom», The Skolkovo Innovation Center, Moscow, 143026 Russia**
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - A. G. Solovyev
- International Laboratory «Resistom», The Skolkovo Innovation Center, Moscow, 143026 Russia**
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - N. O. Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - M. E. Taliansky
- International Laboratory «Resistom», The Skolkovo Innovation Center, Moscow, 143026 Russia**
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997 Russia
| |
Collapse
|
5
|
Wu J, Wang C, Zhu X, Chen J. Sequence analysis of double-strand RNA6 and RNA9 from the fungus Sclerotium hydrophilum. Arch Virol 2017; 162:2913-2917. [DOI: 10.1007/s00705-017-3430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/01/2017] [Indexed: 11/24/2022]
|
6
|
Pyle JD, Keeling PJ, Nibert ML. Amalga-like virus infecting Antonospora locustae, a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods. Virus Res 2017; 233:95-104. [PMID: 28267607 DOI: 10.1016/j.virusres.2017.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/16/2022]
Abstract
A previously reported Expressed Sequence Tag (EST) library from spores of microsporidian Antonospora locustae includes a number of clones with sequence similarities to plant amalgaviruses. Reexamining the sequence accessions from that library, we found additional such clones, contributing to a 3247-nt contig that approximates the length of an amalga-like virus genome. Using A. locustae spores stored from that previous study, and new ones obtained from the same source, we newly visualized the putative dsRNA genome of this virus and obtained amplicons yielding a 3387-nt complete genome sequence. Phylogenetic analyses suggested it as prototype strain of a new genus in family Amalgaviridae. The genome contains two partially overlapping long ORFs, with downstream ORF2 in the +1 frame relative to ORF1 and a proposed motif for +1 ribosomal frameshifting in the region of overlap. Subsequent database searches using the predicted fusion protein sequence of this new amalga-like virus identified related sequences in the transcriptome of a basal hexapod, the springtail species Tetrodontophora bielanensis. We speculate that this second new amalga-like virus (contig length, 3475 nt) likely also derived from a microsporidian, or related organism, which was associated with the springtail specimens at the time of sampling for transcriptome analysis. Other findings of interest include evidence that the ORF1 translation products of these two new amalga-like viruses contain a central region of predicted α-helical coiled coil, as recently reported for plant amalgaviruses, and transcriptome-based evidence for another new amalga-like virus in the transcriptome of another basal hexapod, the two-pronged bristletail species Campodea augens.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Max L Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|