1
|
Wang B, Huang Y, Hu B, Zhang H, Han S, Yang Z, Su Q, He H. Characterization of a reassortant H11N9 subtype avian influenza virus isolated from spot-billed duck in China. Virus Genes 2023:10.1007/s11262-023-02009-8. [PMID: 37266848 DOI: 10.1007/s11262-023-02009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
H11N9 viruses in wild birds might have provided the NA gene of human H7N9 virus in early 2013 in China, which evolved with highly pathogenic strains in 2017 and caused severe fatalities. To investigate the prevalence and evolution of the H11N9 influenza viruses, 16,781 samples were collected and analyzed during 2016-2020. As a result, a novel strain of influenza A (H11N9) virus with several characteristics that increase virulence was isolated. This strain had reduced pathogenicity in chicken and mice and was able to replicate in mice without prior adaptation. Phylogenetic analyses showed that it was a sextuple-reassortant virus of H11N9, H3N8, H3N6, H7N9, H9N2, and H6N8 viruses present in China, similar to the H11N9 strains in Japan and Korea during the same period. This was the H11N9 strain isolated from China most recently, which add a record to viruses in wild birds. This study identified a new H11N9 reassortant in a wild bird with key mutation contributing to virulence. Therefore, comprehensive surveillance and enhanced biosecurity precautions are particularly important for the prediction and prevention of potential pandemics resulting from reassortant viruses with continuous evolution and expanding geographic distributions.
Collapse
Affiliation(s)
- Bo Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Heng Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ziwen Yang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Su
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
2
|
Genetic Characterization of Avian Influenza A (H11N9) Virus Isolated from Mandarin Ducks in South Korea in 2018. Viruses 2020; 12:v12020203. [PMID: 32059510 PMCID: PMC7077279 DOI: 10.3390/v12020203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 01/17/2023] Open
Abstract
In July 2018, a novel avian influenza virus (A/Mandarin duck/South Korea/KNU18-12/2018(H11N9)) was isolated from Mandarin ducks in South Korea. Phylogenetic and molecular analyses were conducted to characterize the genetic origins of the H11N9 strain. Phylogenetic analysis indicated that eight gene segments of strain H11N9 belonged to the Eurasian lineages. Analysis of nucleotide sequence similarity of both the hemagglutinin (HA) and neuraminidase (NA) genes revealed the highest homology with A/duck/Kagoshima/KU57/2014 (H11N9), showing 97.70% and 98.00% nucleotide identities, respectively. Additionally, internal genes showed homology higher than 98% compared to those of other isolates derived from duck and wild birds. Both the polymerase acidic (PA) and polymerase basic 1 (PB1) genes were close to the H5N3 strain isolated in China; whereas, other internal genes were closely related to that of avian influenza virus in Japan. A single basic amino acid at the HA cleavage site (PAIASR↓GLF), the lack of a five-amino acid deletion (residue 69–73) in the stalk region of the NA gene, and E627 in the polymerase basic 2 (PB2) gene indicated that the A/Mandarin duck/South Korea/KNU18-12/2018(H11N9) isolate was a typical low-pathogenicity avian influenza. In vitro viral replication of H11N9 showed a lower titer than H1N1 and higher than H9N2. In mice, H11N9 showed lower adaptation than H1N1. The novel A/Mandarin duck/South Korea/KNU18-12/2018(H11N9) isolate may have resulted from an unknown reassortment through the import of multiple wild birds in Japan and Korea in approximately 2016–2017, evolving to produce a different H11N9 compared to the previous H11N9 in Korea (2016). Further reassortment events of this virus occurred in PB1 and PA in China-derived strains. These results indicate that Japanese- and Chinese-derived avian influenza contributes to the genetic diversity of A/Mandarin duck/South Korea/KNU18-12/2018(H11N9) in Korea.
Collapse
|
3
|
Genetic evidence for the intercontinental movement of avian influenza viruses possessing North American-origin nonstructural gene allele B into South Korea. INFECTION GENETICS AND EVOLUTION 2018; 66:18-25. [PMID: 30196122 DOI: 10.1016/j.meegid.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/16/2018] [Accepted: 09/05/2018] [Indexed: 01/23/2023]
Abstract
Avian influenza viruses (AIVs) are genetically separated by geographical barriers, resulting in the independent evolution of North American and Eurasian lineages. In the present study, to determine whether AIVs possessing the North American-origin nonstructural (NS) gene were previously introduced into South Korea, we performed a genetic analysis of AIVs isolated from fecal samples of migratory birds. We detected seven viruses possessing the North American-origin NS allele B among 413 AIV-positive samples obtained during AI surveillance between 2012 and 2017. We found evidence for the intercontinental transmission of at least three genetically distinct clusters of the B allele of the North American-origin NS gene into Eurasia at a low frequency. The host species of three viruses were identified as the greater white-fronted goose (Anser albifrons) using a DNA barcoding technique. Moreover, we used GPS-CDMA-based telemetry to determine the migration route of the greater white-fronted goose between the Far East of Russia and South Korea and found that this species may play an important role as an intermediate vector in the intercontinental transmission of AIVs. To improve our understanding of the role of wild birds in the ecology of AIVs, advanced AIV surveillance is required in the Far East of Russia as well as in Alaska region of Beringia accompanied by host identification and wild bird tracking.
Collapse
|
4
|
Wille M, Latorre-Margalef N, Tolf C, Halpin R, Wentworth D, Fouchier RAM, Raghwani J, Pybus OG, Olsen B, Waldenström J. Where do all the subtypes go? Temporal dynamics of H8-H12 influenza A viruses in waterfowl. Virus Evol 2018; 4:vey025. [PMID: 30151242 PMCID: PMC6101617 DOI: 10.1093/ve/vey025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Influenza A virus (IAV) is ubiquitous in waterfowl. In the northern hemisphere IAV prevalence is highest during the autumn and coincides with a peak in viral subtype diversity. Although haemagglutinin subtypes H1-H12 are associated with waterfowl hosts, subtypes H8-H12 are detected very infrequently. To better understand the role of waterfowl in the maintenance of these rare subtypes, we sequenced H8-H12 viruses isolated from Mallards (Anas platyrhynchos) from 2002 to 2009. These rare viruses exhibited varying ecological and phylodynamic features. The Eurasian clades of H8 and H12 phylogenies were dominated by waterfowl sequences; mostly viruses sequenced in this study. H11, once believed to be a subtype that infected charadriiformes (shorebirds), exhibited patterns more typical of common virus subtypes. Finally, subtypes H9 and H10, which have maintained lineages in poultry, showed markedly different patterns: H10 was associated with all possible NA subtypes and this drove HA lineage diversity within years. Rare viruses belonging to subtypes H8-H12 were highly reassorted, indicating that these rare subtypes are part of the broader IAV pool. Our results suggest that waterfowl play a role in the maintenance of these rare subtypes, but we recommend additional sampling of non-traditional hosts to better understand the reservoirs of these rare viruses.
Collapse
Affiliation(s)
- Michelle Wille
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Neus Latorre-Margalef
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden.,Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Conny Tolf
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Rebecca Halpin
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, MD, USA
| | - David Wentworth
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, MD, USA
| | - Ron A M Fouchier
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Björn Olsen
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| |
Collapse
|
5
|
Okuya K, Kanazawa N, Kanda T, Kuwahara M, Matsuu A, Horie M, Masatani T, Toda S, Ozawa M. Genetic characterization of an avian H4N6 influenza virus isolated from the Izumi plain, Japan. Microbiol Immunol 2018; 61:513-518. [PMID: 29023947 DOI: 10.1111/1348-0421.12545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/18/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022]
Abstract
An influenza A virus of H4N6 subtype was isolated from the Izumi plain, Japan, in 2013. Genetic analyses revealed that two viral genes (M and NS gene segments) of this isolate were genetically distinct from those of the H4N6 virus isolated from the same place in 2012. Furthermore, three viral genes (PB2, PB1 and M gene segments) of this isolate share high similarity with those of the North American isolates of 2014. These results suggest a high frequency of genetic reassortment of avian influenza viruses in Asian waterfowl and intercontinental movements of avian influenza viruses via migratory waterfowl.
Collapse
Affiliation(s)
- Kosuke Okuya
- Joint Faculty of Veterinary Medicine, Laboratory of Animal Hygiene, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | - Norihiro Kanazawa
- Joint Faculty of Veterinary Medicine, Laboratory of Animal Hygiene, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | - Takehiro Kanda
- Joint Faculty of Veterinary Medicine, Laboratory of Animal Hygiene, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | | | - Aya Matsuu
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan
| | - Masayuki Horie
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan
| | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan
| | - Shigehisa Toda
- Kagoshima Crane Conservation Committee, Izumi, Kagoshima 899-0208, Japan
| | - Makoto Ozawa
- Joint Faculty of Veterinary Medicine, Laboratory of Animal Hygiene, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.,Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan
| |
Collapse
|
6
|
Ma L, Jin T, Wang H, Liu H, Wang R, Li Y, Yang G, Xiong Y, Chen J, Zhang J, Chen G, Li W, Liu D, Lin P, Huang Y, Gao GF, Chen Q. Two reassortant types of highly pathogenic H5N8 avian influenza virus from wild birds in Central China in 2016. Emerg Microbes Infect 2018; 7:14. [PMID: 29410395 PMCID: PMC5837153 DOI: 10.1038/s41426-017-0012-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 01/25/2023]
Abstract
Since 2016, the highly pathogenic avian influenza H5N8 virus has emerged in the Central Asian flyway and Europe, causing massive deaths in poultry and wild birds. In this study, we isolated and identified three H5N8 viruses from swan goose and black swans in Hubei province during the 2016/2017 winter season. Whole-genome sequencing and phylogenetic analysis revealed that the three viruses clustered into a group of H5N8 viruses from Qinghai Lake and Europe. A novel reassortment virus from swan goose was distinguished from that of black swans, in that its PA and NP genes were distinct from those of Qinghai Lake viruses. Molecular dating revealed that the ancestral strain of these H5N8 viruses emerged around July 2015. From sequence comparison, we discovered eight amino acid substitutions in HA and NA during the adaption process from poultry to wild birds. The three viruses were isolated from wild birds in the East Asian-Australasian flyway; however, the viral genomes were similar to H5N8 viruses circulating along the Central Asian flyway. From these data, we conclude that wetlands and lakes in Central China may play a key role in disseminating H5N8 viruses between the East Asian-Australasian and Central Asian flyways.
Collapse
Affiliation(s)
- Liping Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.,Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Jin
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518120, China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Runkun Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Yong Li
- The monitoring center of wildlife diseases and resource of Hubei, Wuhan, 430071, China
| | - Guoxiang Yang
- The monitoring center of wildlife diseases and resource of Hubei, Wuhan, 430071, China
| | - Yanping Xiong
- The monitoring center of wildlife diseases and resource of Hubei, Wuhan, 430071, China
| | - Jing Chen
- The monitoring center of wildlife diseases and resource of Hubei, Wuhan, 430071, China
| | - Jun Zhang
- The monitoring center of wildlife diseases and resource of Hubei, Wuhan, 430071, China
| | - Guang Chen
- The monitoring center of wildlife diseases and resource of Hubei, Wuhan, 430071, China
| | - Wei Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.,Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peng Lin
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yueying Huang
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518120, China
| | - George F Gao
- Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Office of Director-General, ChineseCenter for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China. .,Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|