1
|
Vignesh S, Krishnan N, Senthil N, Rohini R, Mohana Pradeep RK, Karthikeyan G. Emerging squash leaf curl Philippines virus on pumpkin in India: their lineage and recombination. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:119-129. [PMID: 39901954 PMCID: PMC11787121 DOI: 10.1007/s12298-024-01542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025]
Abstract
A roving field survey conducted during the year 2023, assessed the viral disease incidence of about 97% on pumpkin in a farmer holding at Coimbatore (Tamil Nadu, India). The diseased plants expressed symptoms such as severe mosaic, leaf malformation, upward cupping of terminal leaf, yellowing, and stunting. The disease was successfully transmitted by the whiteflies (Bemisia tabaci) to healthy pumpkin, with 24 h of acquisition access period and 12 h of inoculation access period. The samples were found to be associated with bipartite begomoviral DNA-A component of squash leaf curl Philippines virus (SLCPHV) along with DNA-B component of squash leaf curl China virus (SLCCNV) based on rolling circle amplification and DNA sequencing. The nucleotide sequence of DNA-A of SLCPHV (OR860425) shared the highest nucleotide identity of 94.5% with the previously reported SLCPHV isolate of Philippines. The DNA-B component of SLCCNV (OR860426) showed 94.9% identity with the Indian pumpkin isolate. The phylogenetic analysis explicated that the SLCPHV and SLCCNV isolates from pumpkin had common ancestry with SLCPHV and SLCCNV isolates from Philippines and India, respectively. Further analysis predicted intraspecies recombination events on their genome. This study confirms the association of non-cognate SLCPHV (DNA-A) with SLCCNV (DNA-B) causing mosaic disease on pumpkin and to the best of our knowledge it constitutes the first report of SLCPHV occurrence in India. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01542-6.
Collapse
Affiliation(s)
- S. Vignesh
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu India
| | - Nagendran Krishnan
- Division of Crop Protection, National Research Centre for Banana, Tiruchirappalli, Tamil Nadu India
| | - N. Senthil
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu India
| | - R. Rohini
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu India
| | - R. K. Mohana Pradeep
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu India
| | - G. Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu India
| |
Collapse
|
2
|
Vignesh S, Renukadevi P, Nagendran K, Senthil N, Kumar RV, SwarnaPriya R, Behera TK, Karthikeyan G. A distinct strain of tomato leaf curl New Delhi virus that causes mosaic disease in ash gourd and other cucurbitaceous crops. Front Microbiol 2023; 14:1268333. [PMID: 37965544 PMCID: PMC10641021 DOI: 10.3389/fmicb.2023.1268333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
Ash gourd (Benincasa hispida) is a cucurbitaceous crop cultivated as an edible vegetable rich in vitamins, minerals, dietary fibers and antioxidants. In a field survey conducted in the Udumalpet region of Tamil Nadu during 2019, the incidence of mosaic disease on ash gourd crop was observed to be 75%. The DNA-A and DNA-B components of begomovirus genome have been identified as associated with this disease. Both the cloned DNA-A and DNA-B genomic components shared highest pairwise sequence identities with the isolates of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus. Recombinant analysis showed that both the components are possibly evolved through intra-species recombination between ToLCNDV isolates. Tomato leaf curl Bangladesh betasatellite (ToLCBB) is not naturally associated with this sample. The results of infectivity studies on ash gourd and other cucurbitaceous crops demonstrates the Koch's postulates, when co-inoculation of DNA-A and DNA-B of ToLCNDV was undertaken. However, the inoculation of non-cognate ToLCBB along with DNA-A and DNA-B enhances the symptom expression and reduces the time taken for symptom development. Thus, Koch's postulates were proved for these virus complexes on cucurbitaceous crops. Furthermore, an enhanced accumulation of DNA-A component was detected in the cucurbits co-inoculated with ToLCNDV and ToLCBB. This report highlights the importance of investigating the spread of these disease complexes with other cucurbitaceous crops in India.
Collapse
Affiliation(s)
- S. Vignesh
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P. Renukadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - K. Nagendran
- Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - N. Senthil
- Department of Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - R. Vinoth Kumar
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - R. SwarnaPriya
- Floriculture Research Station, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - G. Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Sangeeta, Kumar RV, Yadav BK, Bhatt BS, Krishna R, Krishnan N, Karkute SG, Kumar S, Singh B, Singh AK. Diverse begomovirus-betasatellite complexes cause tomato leaf curl disease in the western India. Virus Res 2023; 328:199079. [PMID: 36813240 PMCID: PMC10194379 DOI: 10.1016/j.virusres.2023.199079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
In the Indian sub-continent, tomato leaf curl disease (ToLCD) of tomato caused by begomoviruses has emerged as a major limiting factor for tomato cultivation. Despite the spread of this disease in the western India, a systematic study on the characterization of virus complexes with ToLCD is lacking. Here, we report the identification of a complex of begomoviruses including 19 DNA-A and 4 DNA-B as well as 15 betasatellites with ToLCD in the western part of the country. Additionally, a novel betasatellite and an alphasatellite were also identified. The recombination breakpoints were detected in the cloned begomoviruses and betasatellites. The cloned infectious DNA constructs cause disease on the tomato (a moderately virus-resistant cultivar) plants, thus fulfilling Koch's postulates for these virus complexes. Further, the role of non-cognate DNA B/betasatellite with ToLCD-associated begomoviruses on disease development was demonstrated. It also emphasizes the evolutionary potential of these virus complexes in breaking disease resistance and plausible expansion of its host range. This necessitates to investigate the mechanism of the interaction between resistance breaking virus complexes and the infected host.
Collapse
Affiliation(s)
- Sangeeta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382 030, India; Present address-Department of Science & Technology, Gujarat Council of Science & Technology, Gandhinagar, Gujarat 382 011, India
| | - R Vinoth Kumar
- Department of Biotechnology, College of Science & Humanities, SRM Institute of Science & Technology, Ramapuram, Chennai, Tamil Nadu 600 089, India
| | - Brijesh K Yadav
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382 030, India; Faculty of Education and Methodology, Jayoti Vidyapeeth Women's University, Jaipur, Rajasthan 303 122, India
| | - Bhavin S Bhatt
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382 030, India; Faculty of Science, Sarvajanik University, Surat, Gujarat 395 001, India
| | - Ram Krishna
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221 305, India
| | - Nagendran Krishnan
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221 305, India
| | - Suhas G Karkute
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221 305, India
| | - Sudhir Kumar
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221 305, India
| | - Bijendra Singh
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221 305, India
| | - Achuit K Singh
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh 221 305, India.
| |
Collapse
|
4
|
Molecular Detection of Southern Tomato Amalgavirus Prevalent in Tomatoes and Its Genomic Characterization with Global Evolutionary Dynamics. Viruses 2022; 14:v14112481. [PMID: 36366579 PMCID: PMC9693158 DOI: 10.3390/v14112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Southern tomato amalgavirus (STV) is a cryptic pathogen that is abundant in tomato production fields and intensifies the resurgence of tomato yellow stunt disease (ToYSD), together with other phytoviruses. Here, we mapped the geographical and genomic diversity, phylogenetics, and evolutionary dynamics of STV. We found that STV prevailed across China and Pakistan, with a maximum average rate of infection of 43.19% in Beijing, China, and 40.08% in Punjab, Pakistan. Subsequently, we amplified, cloned, and annotated the complete genome sequences of STV isolates from Solanum lycopersicum L. in China (OP548653 and OP548652) and Pakistan (MT066231) using Sanger and next-generation sequencing (NGS). These STV isolates displayed close evolutionary relationships with others from Asia, America, and Europe. Whole-genome-based molecular diversity analysis showed that STV populations had 33 haplotypes with a gene diversity (Hd) of 0.977 and a nucleotide diversity (π) of 0.00404. The genetic variability of RNA-dependent RNA-polymerase (RdRp) was higher than that of the putative coat protein (CP) p42. Further analysis revealed that STV isolates were likely to be recombinant but with a lower-to-moderate level of confidence. With a variable distribution pattern of positively and negatively selected sites, negative selection pressure predominantly acted on p42 and RdRp. These findings elaborated on the molecular variability and evolutionary trends among STV populations across major tomato-producing regions of the world.
Collapse
|
5
|
Mishra M, Verma RK, Pandey V, Srivastava A, Sharma P, Gaur R, Ali A. Role of Diversity and Recombination in the Emergence of Chilli Leaf Curl Virus. Pathogens 2022; 11:pathogens11050529. [PMID: 35631050 PMCID: PMC9146097 DOI: 10.3390/pathogens11050529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Chilli leaf curl virus (ChiLCV), (Genus Begomovirus, family Geminiviridae) and associated satellites pose a serious threat to chilli production, worldwide. This study highlights the factors accountable for genetic diversity, recombination, and evolution of ChiLCV, and associated chilli leaf curl alphasatellite (ChiLCA) and chilli leaf curl betasatellite (ChiLCB). Phylogenetic analysis of complete genome (DNA-A) sequences of 132 ChiLCV isolates from five countries downloaded from NCBI database clustered into three major clades and showed high population diversity. The dN/dS ratio and Tajima D value of all viral DNA-A and associated betasatellite showed selective control on evolutionary relationships. Negative values of neutrality tests indicated purified selection and an excess of low-frequency polymorphism. Nucleotide diversity (π) for C4 and Rep genes was higher than other genes of ChiLCV with an average value of π = 18.37 × 10−2 and π = 17.52 × 10−2 respectively. A high number of mutations were detected in TrAP and Rep genes, while ChiLCB has a greater number of mutations than ChiLCA. In addition, significant recombination breakpoints were detected in all regions of ChiLCV genome, ChiLCB and, ChiLCA. Our findings indicate that ChiLCV has the potential for rapid evolution and adaptation to a range of geographic conditions and could be adopted to infect a wide range of crops, including diverse chilli cultivars.
Collapse
Affiliation(s)
- Megha Mishra
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar 332311, Rajasthan, India; (M.M.); (R.K.V.)
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar 332311, Rajasthan, India; (M.M.); (R.K.V.)
| | - Vineeta Pandey
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur 273006, Uttar Pradesh, India; (V.P.); (A.S.)
| | - Aarshi Srivastava
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur 273006, Uttar Pradesh, India; (V.P.); (A.S.)
| | - Pradeep Sharma
- Department of Biotechnology, ICAR—Indian Institute of Wheat & Barley Research, Agarsain Road, Karnal 132001, Haryana, India;
| | - Rajarshi Gaur
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur 273006, Uttar Pradesh, India; (V.P.); (A.S.)
- Correspondence: (R.G.); (A.A.); Tel.: +1-918-631-2018 (A.A.)
| | - Akhtar Ali
- Department of Biological Science, The University of Tulsa, 800 S Tucker Drive, Tulsa, OK 74104-3189, USA
- Correspondence: (R.G.); (A.A.); Tel.: +1-918-631-2018 (A.A.)
| |
Collapse
|
6
|
Singh AK, Yadav BK, Krishna R, Kumar RV, Mishra GP, Karkute SG, Krishnan N, Seth T, Kumari S, Singh B, Singh PM, Singh J. Bhendi Yellow Vein Mosaic Virus and Bhendi Yellow Vein Mosaic Betasatellite Cause Enation Leaf Curl Disease and Alter Host Phytochemical Contents in Okra. PLANT DISEASE 2021; 105:2595-2600. [PMID: 33393356 DOI: 10.1094/pdis-12-20-2655-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Whitefly (Bemisia tabaci)-transmitted begomoviruses cause severe diseases in numerous economically important dicotyledonous plants. Okra enation leaf curl disease (OELCuD) has emerged as a serious threat to okra (Abelmoschus esculentus L. Moench) cultivation in the Indian subcontinent. This study reports the association of a monopartite begomovirus (bhendi yellow vein mosaic virus; BYVMV) and betasatellite (bhendi yellow vein mosaic betasatellite; BYVB) with OELCuD in the Mau region of Uttar Pradesh, India. The BYVMV alone inoculated Nicotiana benthamiana and A. esculentus cv. Pusa Sawani plants developed mild symptoms. Co-inoculation of BYVMV and BYVB resulted in a reduced incubation period, an increased symptom severity, and an enhanced BYVMV accumulation by Southern hybridization and quantitative real-time PCR. This is the first study that satisfies Koch's postulates for OELCuD in its natural host. Activities of various antioxidative enzymes were significantly increased in the virus-inoculated okra plants. Differential responses in various biochemical components (such as photosynthetic pigments, phenol, proline, and sugar) in diseased okra plants were observed. This change in phytochemical responses is significant in understanding its impact on virus pathogenesis and disease development.
Collapse
Affiliation(s)
- Achuit K Singh
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Brijesh K Yadav
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Ram Krishna
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - R Vinoth Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, Delhi, India
| | - Gyan P Mishra
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Suhas G Karkute
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Nagendran Krishnan
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Tania Seth
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Shweta Kumari
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Bijendra Singh
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Prabhakar M Singh
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| | - Jagdish Singh
- Indian Council of Agricultural Research, Indian Institute of Vegetable Research, Varanasi 221 305, Uttar Pradesh, India
| |
Collapse
|
7
|
Farooq T, Umar M, She X, Tang Y, He Z. Molecular phylogenetics and evolutionary analysis of a highly recombinant begomovirus, Cotton leaf curl Multan virus, and associated satellites. Virus Evol 2021; 7:veab054. [PMID: 34532058 PMCID: PMC8438885 DOI: 10.1093/ve/veab054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 11/12/2022] Open
Abstract
Cotton leaf curl Multan virus (CLCuMuV) and its associated satellites are a major part of the cotton leaf curl disease (CLCuD) caused by the begomovirus species complex. Despite the implementation of potential disease management strategies, the incessant resurgence of resistance-breaking variants of CLCuMuV imposes a continuous threat to cotton production. Here, we present a focused effort to map the geographical prevalence, genomic diversity, and molecular evolutionary endpoints that enhance disease complexity by facilitating the successful adaptation of CLCuMuV populations to the diversified ecosystems. Our results demonstrate that CLCuMuV populations are predominantly distributed in China, while the majority of alphasatellites and betasatellites exist in Pakistan. We demonstrate that together with frequent recombination, an uneven genetic variation mainly drives CLCuMuV and its satellite's virulence and evolvability. However, the pattern and distribution of recombination breakpoints greatly vary among viral and satellite sequences. The CLCuMuV, Cotton leaf curl Multan alphasatellite, and Cotton leaf curl Multan betasatellite populations arising from distinct regions exhibit high mutation rates. Although evolutionarily linked, these populations are independently evolving under strong purifying selection. These findings will facilitate to comprehensively understand the standing genetic variability and evolutionary patterns existing among CLCuMuV populations across major cotton-producing regions of the world.
Collapse
Affiliation(s)
- Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Muhammad Umar
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia
| | - Xiaoman She
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| |
Collapse
|
8
|
Sangeeta, Ranjan P, Kumar RV, Bhatt BS, Chahwala FD, Yadav BK, Patel S, Singh B, Singh AK. Two distinct monopartite begomovirus-betasatellite complexes in western India cause tomato leaf curl disease. Virus Res 2021; 295:198319. [PMID: 33508355 DOI: 10.1016/j.virusres.2021.198319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
In India, begomovirus infection causing tomato leaf curl disease (ToLCD) is a major constraint for tomato productivity. Here, we have identified two distinct monopartite begomovirus and betasatellite complexes causing ToLCD in the western part of India. A new monopartite begomovirus (Tomato leaf curl Mumbai virus, ToLCMumV) and betasatellite (Tomato leaf curl Mumbai betasatellite, ToLCMumB) were isolated from the Mumbai sample. A distinct Tomato leaf curl Gandhinagar virus (ToLCGanV) and Tomato leaf curl Gandhinagar betasatellite (ToLCGanB) were identified from the Gandhinagar sample. Both of the cloned begomoviruses were recombinants. The demonstration of systemic infection caused by begomovirus (ToLCGanV or ToLCMumV) alone in N. benthamiana and tomato (a virus resistant variety) emphasizes that they were monopartite begomoviruses. Co-inoculation of cognate begomovirus and betasatellite reduces the incubation period and increases symptom severity. Thus, Koch's postulates were satisfied for these virus complexes. Further, an enhanced accumulation of ToLCGanV was detected in the presence of cognate ToLCGanB, however ToLCMumB did not influence the level of ToLCMumV in the agro-inoculated tomato plants. Our results indicate that the cloned viruses form potential virus resistance breaking disease complexes in India. This necessitates to investigate the spread of these disease complexes to major tomato growing regions in the country.
Collapse
Affiliation(s)
- Sangeeta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382 030, Gujarat, India
| | - Punam Ranjan
- Department of Botany, Patna Science College, Patna University, Patna, 800 005, Bihar, India
| | - R Vinoth Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Bhavin S Bhatt
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382 030, Gujarat, India
| | - Fenisha D Chahwala
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382 030, Gujarat, India
| | - Brijesh K Yadav
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382 030, Gujarat, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382 030, Gujarat, India
| | - Bijendra Singh
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, 221 305, Uttar Pradesh, India
| | - Achuit K Singh
- Crop Improvement Division, ICAR-Indian Institute of Vegetable Research, Varanasi, 221 305, Uttar Pradesh, India.
| |
Collapse
|
9
|
Occurrence and variability of begomoviruses associated with bhendi yellow vein mosaic and okra enation leaf curl diseases in south-western India. Virusdisease 2019; 30:511-525. [PMID: 31897416 DOI: 10.1007/s13337-019-00551-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022] Open
Abstract
Bhendi yellow vein mosaic disease (BYVMD) and Okra enation leaf curl disease (OELCuD) are common diseases of okra/bhendi [Abelmoschus esculentus (L.) Moench] affecting both pod yield and quality in the Indian subcontinent. BYVMD is caused by the infection of a begomovirus and associated betasatellite. In this study, we have made an attempt to investigate the diversity of begomoviral and the satellite sequences in okra samples showing BYVMD and OELCuD, by using a rapid PCR-based approach on 46 samples collected from 23 locations of Southern and Western India. We have also analyzed nine RCA-generated full-length begomoviral clones, some generated from the above samples displaying BYVMD and some OELCuD. By the PCR approach, we find the presence of begomovirus okra enation leaf curl virus (OELCuV) in most samples, irrespective of the disease being displayed (BYVMD or OELCuD). The nine apparently full-length sequences also show high identities with OELCuV and show instances of both intra-specific as well as intra-strainal recombination. We have also analyzed the begomoviral sequences associated with BYVMD and OELCuD from publicly available nucleotide sequence databases and show much higher sequence diversity amongst BYVMV, as compared to OELCuV. This is the first study which comprehensively demonstrates the presence of OELCuV in okra samples showing BYVMD and those showing OELCuD.
Collapse
|
10
|
Qadir R, Khan ZA, Monga D, Khan JA. Diversity and recombination analysis of Cotton leaf curl Multan virus: a highly emerging begomovirus in northern India. BMC Genomics 2019; 20:274. [PMID: 30954067 PMCID: PMC6451280 DOI: 10.1186/s12864-019-5640-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/24/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Cotton leaf curl disease (CLCuD), caused by begomoviruses in association with satellite molecules, is a major threat to cotton production causing enormous losses to cotton crop in most of the cotton growing countries including Indian subcontinent. In this study, isolates of begomovirus and satellite molecules associated with CLCuD were collected from North India (Haryana, New Delhi). They were amplified employing rolling circle replication mechanism, cloned, sequenced and, their phylogenetic and recombination analysis was performed. RESULTS The five Cotton leaf curl Multan virus (CLCuMuV) isolates investigated in this study showed monopartite organization of the genome typical of Old World begomoviruses. Nucleotide sequence analyses assigned them as the strains of CLCuMuV and were designated as CLCuMuV-SR13, CLCuMuV-SR14, CLCuMuV-ND14, CLCuMuV-ND15 and CLCuMuV-SR15. The genome of CLCuMuV-SR13 shared a highest level of nucleotide sequence identity (98%) with CLCuMuV (JN678804), CLCuMuV-SR14 and CLCuMuV-SR15 exhibited 96% with CLCuMuV (KM096471), while isolates CLCuMuV-ND15 and CLCuMuV-SR15 revealed 96% sequence identity with CLCuMuV (AY765253). The four betasatellite molecules investigated in this study shared 95-99% nucleotide sequence identity with Cotton leaf curl Multan betasatellite (CLCuMB) from India. The betasatellite molecules were designated as CLCuMB-SR13, CLCuMB-SR14, CLCuMB-ND14 and CLCuMB-ND15. Alphasatellite molecules in this study, designated as GLCuA-SR14, GLCuA-ND14 and GLCuA-SR15, revealed 98% identity with Guar leaf curl alphasatellite (GLCuA) reported from Pakistan. CONCLUSION The phylogenetic and recombination studies concluded that the isolates of CLCuMuV genomes undertaken in this study have a potential recombinant origin. Remarkably, significant recombination was detected in almost all the genes with contribution of Cotton leaf curl Kokhran Virus (CLCuKoV) in IR, V1, V2, C1, C4 and C5 regions and of CLCuMuV in C2 region of CLCuMuV-SR14. CLCuKoV also donated in C2, C3 regions of CLCuMuV-ND14; V1, V2, C2 and C3 regions of CLCuMuV-ND15 and C1 of CLCuMuV-SR15. Altogether, these observations signify the uniqueness in Indian CLCuMuV isolates showing contribution of CLCuKoV in all the genes. An interesting observation was frequent identification of GLCuA in CLCuD leaf samples.
Collapse
Affiliation(s)
- Razia Qadir
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, 110025, India
| | - Zainul A Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, 110025, India
- Present address: Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Dilip Monga
- Central Institute for Cotton Research (ICAR-CICR), Regional Station, Sirsa, Haryana, 125055, India
| | - Jawaid A Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, 110025, India.
| |
Collapse
|
11
|
Ruhel R, Chakraborty S. Multifunctional roles of geminivirus encoded replication initiator protein. Virusdisease 2018; 30:66-73. [PMID: 31143833 DOI: 10.1007/s13337-018-0458-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Abstract
Geminivirus infection has been a threat to cultivation worldwide by causing huge losses to the crop. The single-stranded DNA genome of a geminivirus possesses a limited coding potential and many of the open reading frames (ORFs) are overlapping. Out of 5-7 ORFs that a geminivirus genome codes for, the AC1 ORF encodes for the replication initiator protein (Rep) which is involved in the replication of virus within the infected plant cell. Rep is the only viral protein absolutely required for the in planta viral replication. Across different genera of the Geminiviridae family, the AC1 ORF exhibits a high degree of sequence conservation thus it has been used as an effective target for developing broad spectrum resistance against the invading geminiviruses. This multifunctional protein is required for initiation, elongation as well as termination of the viral replication process. Rep is also involved in stimulation of viral transcription. In addition, it also functions as suppressor of gene silencing and is involved in the process of transcription by regulating the expression of certain viral genes. Rep protein also interacts with few viral proteins such as coat protein, replication enhancer protein and with several host factors involved in different pathways and processes for its replication and efficient infection. This review will summarise our current understanding about the role of this early viral protein in viral propagation as well as in establishment of pathogenesis in a permissive host.
Collapse
Affiliation(s)
- Rajrani Ruhel
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
12
|
Moriones E, Praveen S, Chakraborty S. Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops. Viruses 2017; 9:E264. [PMID: 28934148 PMCID: PMC5691616 DOI: 10.3390/v9100264] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
The tomato leaf curl New Delhi virus (ToLCNDV) (genus Begomovirus, family Geminiviridae) represents an important constraint to tomato production, as it causes the most predominant and economically important disease affecting tomato in the Indian sub-continent. However, in recent years, ToLCNDV has been fast extending its host range and spreading to new geographical regions, including the Middle East and the western Mediterranean Basin. Extensive research on the genome structure, protein functions, molecular biology, and plant-virus interactions of ToLCNDV has been conducted in the last decade. Special emphasis has been given to gene silencing suppression ability in order to counteract host plant defense responses. The importance of the interaction with DNA alphasatellites and betasatellites in the biology of the virus has been demonstrated. ToLCNDV genetic variability has been analyzed, providing new insights into the taxonomy, host adaptation, and evolution of this virus. Recombination and pseudorecombination have been shown as motors of diversification and adaptive evolution. Important progress has also been made in control strategies to reduce disease damage. This review highlights these various achievements in the context of the previous knowledge of begomoviruses and their interactions with plants.
Collapse
Affiliation(s)
- Enrique Moriones
- Subtropical and Mediterranean Horticulture Institute "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, La Mayora Experimental Station, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Shelly Praveen
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110 012, India.
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|
13
|
Vinoth Kumar R, Singh D, Singh AK, Chakraborty S. Molecular diversity, recombination and population structure of alphasatellites associated with begomovirus disease complexes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 49:39-47. [PMID: 28062387 DOI: 10.1016/j.meegid.2017.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 11/21/2022]
Abstract
The genus, begomovirus (family Geminiviridae) includes a large number of viruses infecting a wide range of plant species worldwide. The majority of monopartite begomoviruses are associated with satellites (betasatellites) and/or satellite-like molecules (alphasatellites). In spite of the Indo-China region being regarded as the centre of origin of begomoviruses and satellites, a detailed study on the emergence and evolution of alphasatellites in India has not yet conducted. Our present analysis indicated the association of 22 alphasatellites with monopartite and bipartite begomovirus-betasatellite complexes in India. Based on sequence pairwise identity, these alphasatellites were categorized into five distinct groups: Cotton leaf curl alphasatellite, Gossypium darwinii symptomless alphasatellite, Gossypium mustelinum symptomless alphasatellite, Okra leaf curl alphasatellite and an unreported Chilli leaf curl alphasatellite (ChiLCA). Furthermore, infectivity analysis of the cloned ChiLCA along with the viral components of either cognate or non-cognate chilli-infecting begomoviruses on Nicotiana benthamiana suggested that ChiLCA is dispensable for leaf curl disease development. It is noteworthy that in the presence of ChiLCA, a marginal decrease in betasatellite DNA level was noticed. Additionally, high genetic variability and diverse recombination patterns were detected among these alphasatellites, and the nucleotide substitution rate for the Rep gene of ChiLCA was determined to be 2.25×10-3nucleotides/site/year. This study highlights the genetic distribution, and likely contribution of recombination and nucleotide diversity in facilitating the emergence of alphasatellites.
Collapse
Affiliation(s)
- R Vinoth Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi -110 067, India
| | - Divya Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi -110 067, India
| | - Achuit K Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi -110 067, India
| | - S Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi -110 067, India.
| |
Collapse
|