1
|
Jing Y, Miltner A, Eggen T, Kästner M, Nowak KM. Microcosm test for pesticide fate assessment in planted water filters: 13C, 15N-labeled glyphosate as an example. WATER RESEARCH 2022; 226:119211. [PMID: 36252297 PMCID: PMC9669332 DOI: 10.1016/j.watres.2022.119211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Planted filters are often used to remove pesticides from runoff water. However, the detailed fate of pesticides in the planted filters still remains elusive. This hampers an accurate assessment of environmental risks of the pesticides related to their fate and thereby development of proper mitigation strategies. In addition, a test system for the chemical fate analysis including plants and in particular for planted filters is not well established yet. Therefore, we developed a microcosm test to simulate the fate of pesticide in planted filters, and applied 2-13C,15N-glyphosate as a model pesticide. The fate of 2-13C,15N-glyphosate in the planted microcosms over 31 day-incubation period was balanced and compared with that in the unplanted microcosms. The mass balance of 2-13C,15N-glyphosate turnover included 13C mineralization, degradation products, and the 13C and 15N incorporation into the rhizosphere microbial biomass and plants. We observed high removal of glyphosate (> 88%) from the water mainly due to adsorption on gravel in both microcosms. More glyphosate was degraded in the planted microcosms with 4.1% of 13C being mineralized, 1.5% of 13C and 3.8% of 15N being incorporated into microbial biomass. In the unplanted microcosms, 1.1% of 13C from 2-13C,15N-glyphosate was mineralized, and only 0.2% of 13C and 0.1% of 15N were assimilated into microbial biomass. The total recovery of 13C and 15N was 81% and 85% in planted microcosms, and 91% and 93% in unplanted counterparts, respectively. The microcosm test was thus proven to be feasible for mass balance assessments of the fate of non-volatile chemicals in planted filters. The results of such studies could help better manage and design planted filters for pesticide removal.
Collapse
Affiliation(s)
- Yuying Jing
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Anja Miltner
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Trine Eggen
- Norwegian Institute of Bioeconomy Research - NIBIO, Postboks 115, 1431-Ås, Norway
| | - Matthias Kästner
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Karolina M Nowak
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany.
| |
Collapse
|
2
|
Córdova-Méndez EA, Góngora-Echeverría VR, González-Sánchez A, Quintal-Franco C, Giácoman-Vallejos G, Ponce-Caballero C. Pesticide treatment in biobed systems at microcosms level under critical moisture and temperature range using an Orthic Solonchaks soil from southeastern Mexico amended with corn husk as support. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145038. [PMID: 33581523 DOI: 10.1016/j.scitotenv.2021.145038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Agriculture effluents from cleaning and handling equipment used in pesticide applications can contaminate superficial and groundwater sources when not correctly disposed of. Biobeds using soil enriched with amendments represent a viable technology to control and minimize pesticide pollution of soil and water in farmlands. They are usually installed outdoors without protection, making them vulnerable to rain flooding, lack of moisture, drought, and intense heat or cold. Temperature (T) and moisture (M) of the biomixture are considered two of the most important physical factor affecting pesticide dissipation. This study aimed to evaluate the effect of T and M on the dissipation of five of the most used pesticides (carbofuran, atrazine, 2,4-D, diazinon, and glyphosate) in Yucatan State, Mexico. Three experiments using miniaturized biobeds considering optimal temperature and moisture (T of 30 ± 2 °C and 90% water holding capacity [WHC]) were performed. The optimal dissipation time and the effect of T, M variations, and volatilization was determined. The optimal dissipation time was over 14 days. Carbofuran was the least dissipated pesticide and glyphosate the most. The primary factor affecting pesticide dissipation was T (P < 0.05), reaching rates of dissipation of 99% at 45 °C. Variations of M in the biomixture were not significant on pesticide dissipation (P > 0.05). The white-rot fungi were observed; its presence was related to increments of T. Head Space analysis (at 45 °C) showed low pesticide volatilization (≤0.03%) for all pesticide used were quantified; water vapor condensation could reduce the pesticide volatilization for experimental conditions.
Collapse
Affiliation(s)
- Edgar A Córdova-Méndez
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Periférico Norte, Apdo. Postal 150, Cordemex, CP 97310 Mérida, Yucatán, Mexico
| | - Virgilio R Góngora-Echeverría
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Periférico Norte, Apdo. Postal 150, Cordemex, CP 97310 Mérida, Yucatán, Mexico.
| | - Avel González-Sánchez
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Periférico Norte, Apdo. Postal 150, Cordemex, CP 97310 Mérida, Yucatán, Mexico
| | - Carlos Quintal-Franco
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Periférico Norte, Apdo. Postal 150, Cordemex, CP 97310 Mérida, Yucatán, Mexico
| | - Germán Giácoman-Vallejos
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Periférico Norte, Apdo. Postal 150, Cordemex, CP 97310 Mérida, Yucatán, Mexico
| | - Carmen Ponce-Caballero
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Periférico Norte, Apdo. Postal 150, Cordemex, CP 97310 Mérida, Yucatán, Mexico.
| |
Collapse
|
3
|
Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Asaduzzaman M, Parven A, Megharaj M. Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114372. [PMID: 32203845 DOI: 10.1016/j.envpol.2020.114372] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/09/2020] [Accepted: 03/12/2020] [Indexed: 05/27/2023]
Abstract
Glyphosate, introduced by Monsanto Company under the commercial name Roundup in 1974, became the extensively used herbicide worldwide in the last few decades. Glyphosate has excellent properties of fast sorption in soil, biodegradation and less toxicity to nontarget organisms. However, glyphosate has been reported to increase the risk of cancer, endocrine-disruption, celiac disease, autism, effect on erythrocytes, leaky-gut syndrome, etc. The reclassification of glyphosate in 2015 as 'probably carcinogenic' under Group 2A by the International Agency for Research on Cancer has been broadly circulated by anti-chemical and environmental advocacy groups claiming for restricted use or ban of glyphosate. In contrast, some comprehensive epidemiological studies involving farmers with long-time exposure to glyphosate in USA and elsewhere coupled with available toxicological data showed no correlation with any kind of carcinogenic or genotoxic threat to humans. Moreover, several investigations confirmed that the surfactant, polyethoxylated tallow amine (POEA), contained in the formulations of glyphosate like Roundup, is responsible for the established adverse impacts on human and ecological health. Subsequent to the evolution of genetically modified glyphosate-resistant crops and the extensive use of glyphosate over the last 45 years, about 38 weed species developed resistance to this herbicide. Consequently, its use in the recent years has been either restricted or banned in 20 countries. This critical review on glyphosate provides an overview of its behaviour, fate, detrimental impacts on ecological and human health, and the development of resistance in weeds and pathogens. Thus, the ultimate objective is to help the authorities and agencies concerned in resolving the existing controversies and in providing the necessary regulations for safer use of the herbicide. In our opinion, glyphosate can be judiciously used in agriculture with the inclusion of safer surfactants in commercial formulations sine POEA, which is toxic by itself is likely to increase the toxicity of glyphosate.
Collapse
Affiliation(s)
- Islam Md Meftaul
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Rajarathnam Dharmarajan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Prasath Annamalai
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Asaduzzaman
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW 2650, Australia
| | - Aney Parven
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
4
|
Gros P, Meissner R, Wirth MA, Kanwischer M, Rupp H, Schulz-Bull DE, Leinweber P. Leaching and degradation of 13C 2- 15N-glyphosate in field lysimeters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:127. [PMID: 31960150 PMCID: PMC6970956 DOI: 10.1007/s10661-019-8045-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate (GLYP), the globally most important herbicide, may have effects in various compartments of the environment such as soil and water. Although laboratory studies showed fast microbial degradation and a low leaching potential, it is often detected in various environmental compartments, but pathways are unknown. Therefore, the objective was to study GLYP leaching and transformations in a lysimeter field experiment over a study period of one hydrological year using non-radioactive 13C2-15N-GLYP labelling and maize cultivation. 15N and 13C were selectively measured using isotopic ratio mass spectrometry (IR-MS) in leachates, soil, and plant material. Additionally, HPLC coupled to tandem mass spectrometry (HPLC-MS/MS) was used for quantitation of GLYP and its main degradation product aminomethylphosphonic acid (AMPA) in different environmental compartments (leachates and soil). Results show low recoveries for GLYP (< 3%) and AMPA (< level of detection) in soil after the study period, whereas recoveries of 15N (11-19%) and 13C (23-54%) were higher. Time independent enrichment of 15N and 13C and the absence of GLYP and AMPA in leachates indicated further degradation. 15N was enriched in all compartments of maize plants (roots, shoots, and cobs). 13C was only enriched in roots. Results confirmed rapid degradation to further degradation products, e.g., 15NH4+, which plausibly was taken up as nutrient by plants. Due to the discrepancy of low GLYP and AMPA concentrations in soil, but higher values for 15N and 13C after the study period, it cannot be excluded that non-extractable residues of GLYP remained and accumulated in soil.
Collapse
Affiliation(s)
- Peter Gros
- Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany.
| | - Ralph Meissner
- Department of Soil System Science, Helmholtz Centre for Environmental Research, Lysimeter Station, Falkenberg 55, 39615, Altmärkische Wische, Germany
| | - Marisa A Wirth
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119, Rostock, Germany
| | - Marion Kanwischer
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119, Rostock, Germany
| | - Holger Rupp
- Department of Soil System Science, Helmholtz Centre for Environmental Research, Lysimeter Station, Falkenberg 55, 39615, Altmärkische Wische, Germany
| | - Detlef E Schulz-Bull
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119, Rostock, Germany
| | - Peter Leinweber
- Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany
| |
Collapse
|
5
|
Nguyen NK, Dörfler U, Welzl G, Munch JC, Schroll R, Suhadolc M. Large variation in glyphosate mineralization in 21 different agricultural soils explained by soil properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:544-552. [PMID: 29426177 DOI: 10.1016/j.scitotenv.2018.01.204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
Glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) have frequently been detected in surface water and groundwaters. Since adequate glyphosate mineralization in soil may reduce its losses to environment, improved understanding of site specific factors underlying pesticide mineralization in soils is needed. The aim of this study was to investigate the relationship between soil properties and glyphosate mineralization. To establish a sound basis for resilient correlations, the study was conducted with a large number of 21 agricultural soils, differing in a variety of soil parameters, such as soil texture, soil organic matter content, pH, exchangeable ions etc. The mineralization experiments were carried out with 14C labelled glyphosate at a soil water tension of -15 kPa and at a soil density of 1.3 g cm-3 at 20 ± 1 °C for an incubation period of 32 days. The results showed that the mineralization of glyphosate in different agricultural soils varied to a great extent, from 7 to 70% of the amount initially applied. Glyphosate mineralization started immediately after application, the highest mineralization rates were observed within the first 4 days in most of the 21 soils. Multiple regression analysis revealed exchangeable acidity (H+ and Al3+), exchangeable Ca2+ ions and ammonium lactate extractable K to be the key soil parameters governing glyphosate mineralization in the examined soils. A highly significant negative correlation between mineralized glyphosate and NaOH-extractable residues (NaOH-ER) in soils strongly suggests that NaOH-ER could be used as a simple and reliable parameter for evaluating the glyphosate mineralization capacity. The NaOH-ER were composed of glyphosate, unknown 14C-residues, and AMPA (12%-65%, 3%-34%, 0%-11% of applied 14C, respectively). Our results highlighted the influential role of soil exchangeable acidity, which should therefore be considered in pesticide risk assessments and management to limit efficiently the environmental transfers of glyphosate.
Collapse
Affiliation(s)
- Nghia Khoi Nguyen
- Cantho University, Department of Soil Science, Cantho City, Viet Nam; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Ulrike Dörfler
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Gerhard Welzl
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Jean Charles Munch
- Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, 85354 Freising, Germany
| | - Reiner Schroll
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Marjetka Suhadolc
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Bento CPM, Yang X, Gort G, Xue S, van Dam R, Zomer P, Mol HGJ, Ritsema CJ, Geissen V. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:301-311. [PMID: 27505263 DOI: 10.1016/j.scitotenv.2016.07.215] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 05/12/2023]
Abstract
The dissipation kinetics of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) were studied in loess soil, under biotic and abiotic conditions, as affected by temperature, soil moisture (SM) and light/darkness. Nonsterile and sterile soil samples were spiked with 16mgkg-1 of glyphosate, subjected to three SM contents (20% WHC, 60% WHC, saturation), and incubated for 30days at 5°C and 30°C, under dark and light regimes. Glyphosate and AMPA dissipation kinetics were fit to single-first-order (SFO) or first-order-multicompartment (FOMC) models, per treatment combination. AMPA kinetic model included both the formation and decline phases. Glyphosate dissipation kinetics followed SFO at 5°C, but FOMC at 30°C. AMPA followed SFO dissipation kinetics for all treatments. Glyphosate and AMPA dissipation occurred mostly by microbial activity. Abiotic processes played a negligible role for both compounds. Under biotic conditions, glyphosate dissipation and AMPA formation/dissipation were primarily affected by temperature, but also by SM. Light regimes didn't play a significant role. Glyphosate DT50 varied between 1.5 and 53.5days, while its DT90 varied between 8.0 and 280days, depending on the treatment. AMPA persisted longer in soil than glyphosate, with its DT50 at 30°C ranging between 26.4 and 44.5days, and its DT90 between 87.8 and 148days. The shortest DT50/DT90 values for both compounds occurred at 30°C and under optimal/saturated moisture conditions, while the largest occurred at 5°C and reaching drought stress conditions. Based on these results, we conclude that glyphosate and AMPA dissipate rapidly under warm and rainy climate conditions. However, repeated glyphosate applications in fallows or winter crops in countries where cold and dry winters normally occur could lead to on-site soil pollution, with consequent potential risks to the environment and human health. To our knowledge, this study is the first evaluating the combined effect of temperature, soil moisture and light/dark conditions on AMPA formation/dissipation kinetics and behaviour.
Collapse
Affiliation(s)
- Célia P M Bento
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Xiaomei Yang
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gerrit Gort
- Biometris, Wageningen University, PO Box 100, 6700 AC Wageningen, the Netherlands
| | - Sha Xue
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau of Northwest A&F University, Yangling, 712100 Shaanxi, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Education, Yangling, 712100 Shaanxi, China
| | - Ruud van Dam
- RIKILT - Wageningen UR, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - Paul Zomer
- RIKILT - Wageningen UR, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - Hans G J Mol
- RIKILT - Wageningen UR, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - Coen J Ritsema
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Institute of Crop Science and Resources Conservation (INRES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
7
|
Katagi T. Soil column leaching of pesticides. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 221:1-105. [PMID: 23090630 DOI: 10.1007/978-1-4614-4448-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this review, I address the practical and theoretical aspects of pesticide soil mobility.I also address the methods used to measure mobility, and the factors that influence it, and I summarize the data that have been published on the column leaching of pesticides.Pesticides that enter the unsaturated soil profile are transported downwards by the water flux, and are adsorbed, desorbed, and/or degraded as they pass through the soil. The rate of passage of a pesticide through the soil depends on the properties of the pesticide, the properties of the soil and the prevailing environmental conditions.Because large amounts of many different pesticides are used around the world, they and their degradates may sometimes contaminate groundwater at unacceptable levels.It is for this reason that assessing the transport behavior and soil mobility of pesticides before they are sold into commerce is important and is one indispensable element that regulators use to assess probable pesticide safety. Both elementary soil column leaching and sophisticated outdoor lysimeter studies are performed to measure the leaching potential for pesticides; the latter approach more reliably reflects probable field behavior, but the former is useful to initially profile a pesticide for soil mobility potential.Soil is physically heterogeneous. The structure of soil varies both vertically and laterally, and this variability affects the complex flow of water through the soil profile, making it difficult to predict with accuracy. In addition, macropores exist in soils and further add to the complexity of how water flow occurs. The degree to which soil is tilled, the density of vegetation on the surface, and the type and amounts of organic soil amendments that are added to soil further affect the movement rate of water through soil, the character of soil adsorption sites and the microbial populations that exist in the soil. Parameters that most influence the rate of pesticide mobility in soil are persistence (DT50) of the pesticide, and its sorption/desorption(Koc) characteristics. These parameters may vary for the same pesticide from geographic site-to-site and with soil depth. The interactions that normally occur between pesticides and dissolved organic matter (DOM) or WDC are yet other factors that may complicate pesticide leaching behavior.The soil mobility of pesticides is normally tested both in the laboratory and in the field. Lab studies are initially performed to give researchers a preliminary appraisal of the relative mobility of a pesticide. Later, field lysimeter studies can be performed to provide more natural leaching conditions that emulate the actual field use pattern. Lysimeter studies give the most reliable information on the leaching behavior of a pesticide under field conditions, but these studies are time-consuming and expensive and cannot be performed everywhere. It is for this reason that the laboratory soil column leaching approach is commonly utilized to profile the mobility of a pesticide,and appraise how it behaves in different soils, and relative to other pesticides.Because the soil structure is chemically and physically heterogenous, different pesticide tests may produce variable DT50 and Koc values; therefore, initial pesticide mobility testing is undertaken in homogeneously packed columns that contain two or more soils and are eluted at constant flow rates. Such studies are done in duplicate and utilize a conservative tracer element. By fitting an appropriate mathematical model to the breakthrough curve of the conservative tracer selected,researchers determine key mobility parameters, such as pore water velocity, the column-specific dispersion coefficient, and the contribution of non equilibrium transport processes. Such parameters form the basis for estimating the probable transport and degradation rates that will be characteristic of the tested pesticide. Researchers also examine how a pesticide interacts with soil DOM and WDC, and what contribution from facilitated transport to mobility is made as a result of the effects of pH and ionic strength. Other methods are used to test how pesticides may interact with soil components to change mobility. Spectroscopic approaches are used to analyze the nature of soil pesticide complexes. These may provide insight into the mechanism by which interactions occur. Other studies may be performed to determine the effect of agricultural practices (e.g., tillage) on pesticide leaching under controlled conditions using intact soil cores from the field. When preferential flow is suspected to occur, dye staining is used to examine the contribution of macropores to pesticide transport. These methods and others are addressed in the text of this review.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Hyogo, Japan.
| |
Collapse
|
8
|
Grundmann S, Doerfler U, Munch JC, Ruth B, Schroll R. Impact of soil water regime on degradation and plant uptake behaviour of the herbicide isoproturon in different soil types. CHEMOSPHERE 2011; 82:1461-1467. [PMID: 21144550 DOI: 10.1016/j.chemosphere.2010.11.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 05/30/2023]
Abstract
The environmental fate of the worldwide used herbicide isoproturon was studied in four different, undisturbed lysimeters in the temperate zone of Middle Europe. To exclude climatic effects due to location, soils were collected at different regions in southern Germany and analyzed at a lysimeter station under identical environmental conditions. (14)C-isoproturon mineralization varied between 2.59% and 57.95% in the different soils. Barley plants grown on these lysimeters accumulated (14)C-pesticide residues from soil in partially high amounts and emitted (14)CO(2) in an extent between 2.01% and 13.65% of the applied (14)C-pesticide. Plant uptake and (14)CO(2) emissions from plants were inversely linked to the mineralization of the pesticide in the various soils: High isoproturon mineralization in soil resulted in low plant uptake whereas low isoproturon mineralization in soil resulted in high uptake of isoproturon residues in crop plants and high (14)CO(2) emission from plant surfaces. The soil water regime was identified as an essential factor that regulates degradation and plant uptake of isoproturon whereby the intensity of the impact of this factor is strongly dependent on the soil type.
Collapse
Affiliation(s)
- Sabine Grundmann
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Soil Ecology, 85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
9
|
Bonfleur EJ, Lavorenti A, Tornisielo VL. Mineralization and degradation of glyphosate and atrazine applied in combination in a Brazilian Oxisol. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2011; 46:69-75. [PMID: 21191866 DOI: 10.1080/03601234.2011.534384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The aim of this study was to investigate the behavior of the association between atrazine and glyphosate in the soil through mineralization and degradation tests. Soil treatments consisted of the combination of a field dose of glyphosate (2.88 kg ha⁻¹) with 0, ½, 1 and 2 times a field dose of atrazine (3.00 kg ha⁻¹) and a field dose of atrazine with 0, ½, 1 and 2 times a field dose of glyphosate. The herbicide mineralization rates were measured after 0, 3, 7, 14, 21, 28, 35, 42, 49, 56 and 63 days of soil application, and degradation rates after 0, 7, 28 and 63 days. Although glyphosate mineralization rate was higher in the presence of 1 (one) dose of atrazine when compared with glyphosate alone, no significant differences were found when half or twice the atrazine dose was applied, meaning that differences in glyphosate mineralization rates cannot be attributed to the presence of atrazine. On the other hand, the influence of glyphosate on atrazine mineralization was evident, since increasing doses of glyphosate increased the atrazine mineralization rate and the lowest dose of glyphosate accelerated atrazine degradation.
Collapse
Affiliation(s)
- Eloana J Bonfleur
- College of Agriculture "Luiz de Queiroz" (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | | |
Collapse
|