1
|
Manna T, Chandra Guchhait K, Jana D, Dey S, Karmakar M, Hazra S, Manna M, Jana P, Panda AK, Ghosh C. Wastewater-based surveillance of Vibrio cholerae: Molecular insights on biofilm regulatory diguanylate cyclases, virulence factors and antibiotic resistance patterns. Microb Pathog 2024; 196:106995. [PMID: 39368563 DOI: 10.1016/j.micpath.2024.106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Vibrio cholerae is an inherent inhabitant of aquatic ecosystems. The Indian state of West Bengal, especially the Gangetic delta region is the highest cholera affected region and is considered as the hub of Asiatic cholera. V. cholerae were isolated from publicly accessible wastewater of Midnapore, West Bengal, India. Serotyping determined all isolates to be of non-O1/non-O139 serogroups. Moderate biofilm-forming abilities were noticed in most of the isolates (74.7 %) while, high biofilm formation was recorded for only 6.3 % isolates and 19 % of isolates exhibited low/non-biofilm-forming abilities. PCR-based screening of crucial diguanylate cyclases (DGCs) involved in cyclic-di-GMP-mediated biofilm signaling was performed. cdgH and cdgM were the most abundant DGCs among 93.7 % and 91.5 % of isolates, respectively. Other important DGCs, i.e., cdgK, cdgA, cdgL, and vpvC were present in 84 %, 75.5 %, 72 % and 68 % of isolates, respectively. Besides, the non-O1/non-O139 isolates were screened for the occurrence of virulence factor encoding genes. Moreover, among these non-O1/non-O139 isolates, two strains (3.17 %) harbored both ctxA and ctxB genes, which encode the cholera toxin associated with epidemic cholera. ompU was the most prevalent virulence factor, present in 24.8 % of isolates. Other virulence factors like, zot and st were found in 4.7 % and 9.5 % of isolates. Genes encoding tcp and ace were found to be PCR-negative for the isolates. Additionally, crucial virulence factor regulators, toxT, toxR and hapR were found to be PCR-positive in all the isolates. Antibiotic resistance patterns displayed further vulnerabilities with decreased sensitivity towards commonly used antibiotics with multiple antibiotic resistance index ranging between 0.37 and 0.62. The presence of cholera toxin-encoding multi-drug resistant (MDR) V. cholerae strains in environmental settings is alarming. High occurrence of DGCs are considered to encourage further investigations to use them as alternative therapeutic targets against MDR cholera pathogen due to their unique presence in bacterial systems.
Collapse
Affiliation(s)
- Tuhin Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | - Debarati Jana
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subhamoy Dey
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India; Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, India
| | - Monalisha Karmakar
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subrata Hazra
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Mousumi Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Pradip Jana
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Chandradipa Ghosh
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India.
| |
Collapse
|
2
|
Ekundayo TC, Swalaha FM, Ijabadeniyi OA. Global and regional final point-of-drinking water prevalence of Vibrio pathogens: a systematic analysis with socioeconomic, global health security, and WASH indices-guided meta-regressions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173818. [PMID: 38852862 DOI: 10.1016/j.scitotenv.2024.173818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The final point-of-drinking water (FPODW) exposure to Vibrio and waterborne pathogens remains a misaim surveillance target. Therefore, the current study purposed to estimate the global and regional prevalence of Vibrio pathogens in FPODW. Vibrio-FPODW data derived from integrated databases per PRISMA protocol were fitted to a random-intercept-logistic mixed-effects and meta-regression models. The global FPODW Vibrio prevalence was 5.13% (95%CI: 2.24-11.30) with 7.76% (6.84-8.78) cross-validated value. Vibrio prevalence in different FPODW varied with the highest in unclassified (13.98%, 3.98-38.95), household stored (6.42%, 1.16-28.69), municipal (4.39%, 1.54-11.90), and bottled (1.06%, 0.00-98.57) FPODW. Regionally, FPODW Vibrio prevalence varied significantly with highest in Africa (6.31%, 0.49-47.88), then Asia (4.83%, 2.01-11.18). Similarly, it varied significantly among income classification with the highest from low-income (8.77%, 0.91-50.05), then lower-middle-income (6.16%, 2.75-13.20), upper-middle-income (0.23%, 0.00-82.04), and 0.94% (0.19-2.72) in high-income economies. Among the WHO region, it varied significantly from 1.41% (0.17-10.45) in Eastern Mediterranean, 6.31% (0.49-47.88) in Africa to 8.86% (3.85-19.06) in South-East Asia and declining among SDI-quintiles from 11.64% (3.29-33.83) in Low-SDI, 10.59% (4.58-22.61) in High-middle-SDI to 0.26% (0.01-9.09) in Middle-SDI. FPODW Vibrio prevalence was 7.31% (2.94-17.03) in the low-GHSIG, followed by 4.55% (0.00-100.00) in the upper-GHSIG, and 2.21% (0.31-14.24) in middle-GHSIG; rural (4.18%, 0.06-76.17) and urban (5.28%, 2.35-11.44) settings. Also, sample size, SDI, SDI-quintiles, and nation significantly explained 14.12%, 10.91%, 30.35%, and 87.65% variance in FPODW Vibrio prevalence, respectively as a univariate influence. Additionally, 11.90% variance in FPODW Vibrio prevalence explained mortality rate attributed to unsafe WASH services. In conclusion, the study revealed a substantial high FPODW prevalence of Vibrio calling for initiative-taking and intentional surveillances of waterborne pathogens at the neglected stage across nations in order to achieve sustainably the SDG 3.
Collapse
Affiliation(s)
- Temitope C Ekundayo
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, 121 Steve Biko Rd, Musgrave, Berea, 4001 Durban, South Africa.
| | - Feroz M Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, 121 Steve Biko Rd, Musgrave, Berea, 4001 Durban, South Africa
| | - Oluwatosin A Ijabadeniyi
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, 121 Steve Biko Rd, Musgrave, Berea, 4001 Durban, South Africa
| |
Collapse
|
3
|
Igere BE, Okoh AI, Nwodo UU. Non-serogroup O1/O139 agglutinable Vibrio cholerae: a phylogenetically and genealogically neglected yet emerging potential pathogen of clinical relevance. Arch Microbiol 2022; 204:323. [PMID: 35567650 PMCID: PMC9107296 DOI: 10.1007/s00203-022-02866-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 12/19/2022]
Abstract
Somatic antigen agglutinable type-1/139 Vibrio cholerae (SAAT-1/139-Vc) members or O1/O139 V. cholerae have been described by various investigators as pathogenic due to their increasing virulence potential and production of choleragen. Reported cholera outbreak cases around the world have been associated with these choleragenic V. cholerae with high case fatality affecting various human and animals. These virulent Vibrio members have shown genealogical and phylogenetic relationship with the avirulent somatic antigen non-agglutinable strains of 1/139 V. cholerae (SANAS-1/139- Vc) or O1/O139 non-agglutinating V. cholerae (O1/O139-NAG-Vc). Reports on implication of O1/O139-NAGVc members in most sporadic cholera/cholera-like cases of diarrhea, production of cholera toxin and transmission via consumption and/or contact with contaminated water/seafood are currently on the rise. Some reported sporadic cases of cholera outbreaks and observed change in nature has also been tracable to these non-agglutinable Vibrio members (O1/O139-NAGVc) yet there is a sustained paucity of research interest on the non-agglutinable V. cholerae members. The emergence of fulminating extraintestinal and systemic vibriosis is another aspect of SANAS-1/139- Vc implication which has received low attention in terms of research driven interest. This review addresses the need to appraise and continually expand research based studies on the somatic antigen non-serogroup agglutinable type-1/139 V. cholerae members which are currently prevalent in studies of water bodies, fruits/vegetables, foods and terrestrial environment. Our opinion is amassed from interest in integrated surveillance studies, management/control of cholera outbreaks as well as diarrhea and other disease-related cases both in the rural, suburban and urban metropolis.
Collapse
Affiliation(s)
- Bright E Igere
- Department of Microbiology and Biotechnology, Western Delta University, Oghara, Delta State, Nigeria.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Uchechukwu U Nwodo
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
4
|
Zohra T, Ikram A, Salman M, Amir A, Saeed A, Ashraf Z, Ahad A. Wastewater based environmental surveillance of toxigenic Vibrio cholerae in Pakistan. PLoS One 2021; 16:e0257414. [PMID: 34591885 PMCID: PMC8483414 DOI: 10.1371/journal.pone.0257414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pakistan has been experiencing intervals of sporadic cases and localized outbreaks in the last two decades. No proper study has been carried out in order to find out the environmental burden of toxigenic V. cholerae as well as how temporal and environmental factors associated in driving cholera across the country. METHODS We tested waste water samples from designated national environment surveillance sites in Pakistan with RT-PCR assay. Multistage sampling technique were utilized for samples collection and for effective sample processing Bag-Mediated Filtration system, were employed. Results were analysed by district and month wise to understand the geographic distribution and identify the seasonal pattern of V. cholera detection in Pakistan. RESULTS Between May 2019, and February 2020, we obtained and screened 160 samples in 12 districts across Pakistan. Out of 16 sentinel environmental surveillance sites, 15 sites showed positive results against cholera toxigenic gene with mostly lower CT value (mean, 34±2) and have significant difference (p < 0.05). The highest number of positive samples were collected from Sindh in month of November, then in June it is circulating in different districts of Pakistan including four Provinces respectively. CONCLUSION V. cholera detection do not follow a clear seasonal pattern. However, the poor sanitation problems or temperature and rainfall may potentially influence the frequency and duration of cholera across the country. Occurrence of toxigenic V. cholerae in the environment samples showed that cholera is endemic, which is an alarming for a potential future cholera outbreaks in the country.
Collapse
Affiliation(s)
- Tanzeel Zohra
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Aamer Ikram
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Salman
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Afreenish Amir
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Asim Saeed
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Zurva Ashraf
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Abdul Ahad
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| |
Collapse
|
5
|
Riverbed Sediments as Reservoirs of Multiple Vibrio cholerae Virulence-Associated Genes: A Potential Trigger for Cholera Outbreaks in Developing Countries. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2017. [PMID: 28642796 PMCID: PMC5470021 DOI: 10.1155/2017/5646480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Africa remains the most cholera stricken continent in the world as many people lacking access to safe drinking water rely mostly on polluted rivers as their main water sources. However, studies in these countries investigating the presence of Vibrio cholerae in aquatic environments have paid little attention to bed sediments. Also, information on the presence of virulence-associated genes (VAGs) in environmental ctx-negative V. cholerae strains in this region is lacking. Thus, we investigated the presence of V. cholerae VAGs in water and riverbed sediment of the Apies River, South Africa. Altogether, 120 samples (60 water and 60 sediment samples) collected from ten sites on the river (January and February 2014) were analysed using PCR. Of the 120 samples, 37 sediment and 31 water samples were positive for at least one of the genes investigated. The haemolysin gene (hlyA) was the most isolated gene. The cholera toxin (ctxAB) and non-O1 heat-stable (stn/sto) genes were not detected. Genes were frequently detected at sites influenced by human activities. Thus, identification of V. cholerae VAGs in sediments suggests the possible presence of V. cholerae and identifies sediments of the Apies River as a reservoir for potentially pathogenic V. cholerae with possible public health implications.
Collapse
|
6
|
Abia ALK, Ubomba-Jaswa E, Genthe B, Momba MNB. Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1143-1151. [PMID: 27297265 DOI: 10.1016/j.scitotenv.2016.05.155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
Although higher microbial concentrations have been reported in sediments than in the overlying water column, most quantitative microbial risk assessment (QMRA) studies have not clearly indicated the contribution of sediment-borne pathogens to estimated risks. Thus, the present study aimed at determining the public health risk associated with exposure to pathogenic bacteria in polluted river water under undisturbed conditions and conditions of sediment resuspension in the Apies River, Gauteng, South Africa. Microbial pathogens were isolated and identified using culture and molecular methods. The beta-Poisson dose-response model was used to estimate the probability of infection (Pi) with the various pathogens, following accidental/intentional ingestion of 1mL or 100mL (or 50mL) of untreated river water. Mean wet season Escherichia coli counts ranged between 5.8E+01 and 8.8E+04MPN/100mL (water column) and between 2.40E+03 and 1.28E+05MPN/100mL (sediments). Mean dry season E. coli counts ranged between 5.11E+00 and 3.40E+03MPN/100mL (water column) and between 5.09E+00 and 6.30E+03MPN/100mL (sediments). Overall (water and sediments) Vibrio cholerae was the most detected pathogen (58.8%) followed by Salmonella spp. (23.9%) and Shigella (10.1%). Ingestion of 1mL of river water could lead to 0%-4% and 1%-74% Pi with E. coli during the dry and wet season, respectively. During the dry season, the Pi with V. cholerae, Salmonella spp. and Shigella spp. were 0%-1.39%, 0%-4.11% and 0%-0.16% respectively, depending on volume of water ingested. The risks of infections with all microorganisms increased during the wet season. A 2-log increase in water E. coli count following sediments disturbance led to approximately 10 times higher Pi with E. coli than when sediments were undisturbed. Therefore, the use of the untreated water from the Apies River for drinking, household purposes or recreational activities poses a potential health risk to the users of the river.
Collapse
Affiliation(s)
- Akebe Luther King Abia
- Department of Environmental, Water and Earth Science, Tshwane University of Technology, Arcadia Campus, 175 Nelson Mandela Drive, Pretoria 0001, South Africa.
| | - Eunice Ubomba-Jaswa
- Natural Resources and the Environment, CSIR, PO Box 395, Pretoria 0001, South Africa.
| | - Bettina Genthe
- Natural Resources and the Environment, CSIR, Stellenbosch, South Africa.
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Science, Tshwane University of Technology, Arcadia Campus, 175 Nelson Mandela Drive, Pretoria 0001, South Africa.
| |
Collapse
|
7
|
John J, Wright CY, Oosthuizen MA, Steyn M, Genthe B, le Roux W, Albers P, Oberholster P, Pauw C. Environmental health outcomes and exposure risks among at-risk communities living in the Upper Olifants River Catchment, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2013; 24:195-214. [PMID: 23815773 DOI: 10.1080/09603123.2013.807327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Potential exposure to water and air pollution and associated health impacts of three low-income communities in the Upper Olifants River Catchment, South Africa, was investigated through a cross-sectional epidemiological study comprising a household survey. Water samples were collected and analysed for microbial indicators and pathogens. Ambient air-monitoring included some of the criteria pollutants, as well as mercury and manganese. Associations between environmental exposure and health outcomes were analysed by means of logistic regression. Despite poor water and air quality episodes, the communities' self-perceived health was good with relatively low prevalence of reported health outcomes. Hygiene practices with respect to water collection and storage were often poor, and most likely contributed to the regularly contaminated water storage containers. Community proximity to the polluted stream was associated with increased prevalence in adverse health outcomes. This paper reports on preliminary results and additional multivariate analyses are necessary to further understand study results.
Collapse
Affiliation(s)
- Juanette John
- a Natural Resource and the Environment, CSIR , Pretoria , South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schmit VL, Martoglio R, Carron KT. Lab-on-a-Bubble Surface Enhanced Raman Indirect Immunoassay for Cholera. Anal Chem 2012; 84:4233-6. [DOI: 10.1021/ac300242k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- V. L. Schmit
- University of Wyoming, Chemistry Department, 1000 East University
Avenue, Laramie, Wyoming
82071, United States
| | - R. Martoglio
- Department
of Chemistry and
Biochemistry, DePauw University, 602 South
College Avenue, Greencastle, Indiana 46135, United States
| | - K. T. Carron
- University of Wyoming, Chemistry Department, 1000 East University
Avenue, Laramie, Wyoming
82071, United States
| |
Collapse
|
9
|
Fykse EM, Nilsen T, Nielsen AD, Tryland I, Delacroix S, Blatny JM. Real-time PCR and NASBA for rapid and sensitive detection of Vibrio cholerae in ballast water. MARINE POLLUTION BULLETIN 2012; 64:200-206. [PMID: 22221710 DOI: 10.1016/j.marpolbul.2011.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/02/2011] [Accepted: 12/07/2011] [Indexed: 05/31/2023]
Abstract
Transport of ballast water is one major factor in the transmission of aquatic organisms, including pathogenic bacteria. The IMO-guidelines of the Convention for the Control and Management of Ships' Ballast Water and Sediments, states that ships are to discharge <1 CFU per 100 ml ballast water of toxigenic Vibrio cholerae, emphasizing the need to establish test methods. To our knowledge, there are no methods sensitive and rapid enough available for cholera surveillance of ballast water. In this study real-time PCR and NASBA methods have been evaluated to specifically detect 1 CFU/100ml of V. cholerae in ballast water. Ballast water samples spiked with V. cholerae cells were filtered and enriched in alkaline peptone water before PCR or NASBA detection. The entire method, including sample preparation and analysis was performed within 7 h, and has the potential to be used for analysis of ballast water for inspection and enforcement control.
Collapse
Affiliation(s)
- Else M Fykse
- Norwegian Defence Research Establishment (FFI), P.O. Box 25, N-2027 Kjeller, Norway.
| | | | | | | | | | | |
Collapse
|
10
|
Rodrigues Ribeiro Teles FS, Pires de Távora Tavira LA, Pina da Fonseca LJ. Biosensors as rapid diagnostic tests for tropical diseases. Crit Rev Clin Lab Sci 2011; 47:139-69. [PMID: 21155631 DOI: 10.3109/10408363.2010.518405] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Effective diagnosis of infectious pathogens is essential for disease identification and subsequent adequate treatment, to prevent drug resistance and to adopt suitable public health interventions for the prevention and control of epidemic outbreaks. Particular situations under which medical diagnostics operate in tropical environments make the use of new easy-to-use diagnostic tools the preferred (or even unique) option. These diagnostic tests and devices, usually based on biosensing methods, are being increasingly exploited as promising alternatives to classical, "heavy" lab instrumentation for clinical diagnosis, allowing simple, inexpensive and point-of-care testing. However, in many developing countries the lack of accessibility and affordability for many commercial diagnostic tests remains a major cause of high disease burden in such regions. We present a comprehensive overview about the problems of conventional medical diagnosis of infectious pathologies in tropical regions, while pointing out new methods and analytical tools for in-the-field and decentralized diagnosis of current major infectious tropical diseases. The review includes not only biosensor-based rapid diagnostic tests approved by regulatory entities and already commercialized, but also those at the early stages of research.
Collapse
|
11
|
Rajkumar S, Joseph Ratnam VP, Narmada N, Arakawa E, Sundararaj T. Enterotoxigenicity screening of viable environmental Vibrio cholerae strains from rainwater pools in a university campus in Chennai, South India. ACTA ACUST UNITED AC 2011; 43:325-8. [PMID: 21231812 DOI: 10.3109/00365548.2010.548079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Vibrio spp., being primarily inhabitants of the aquatic environment, pose a severe health threat to humans. This problem is escalated in developing countries where water-logging after rainfall is very common. Therefore, screening of environmental water samples for the presence of clinically important species of Vibrio becomes essential. METHODS This study was conducted for a period of 1 y. Water samples were collected every month from 4 locations where water pools formed after rains, on the campus of a university in Chennai, South India. The water samples were monitored for Vibrio species, and characterized isolates were screened for enterotoxigenicity. RESULTS Thirty isolates of Vibrio cholerae belonging to a variety of serogroups and 11 strains of Vibrio species other than cholerae were isolated from the rainwater pools. On polymerase chain reaction (PCR) screening, while all the strains were positive for the ompW gene, none tested positive for the ctxA gene. CONCLUSIONS Though all the environmental isolates of V. cholerae were non-epidemic, 4 isolates demonstrated enterotoxigenicity by rabbit ileal loop method and antibiotic resistance to drugs. This is of concern and underscores the importance of screening environmental specimens and improving civic infrastructure to prevent prolonged water-logging in developing countries.
Collapse
Affiliation(s)
- Samuel Rajkumar
- Department of Microbiology, Dr A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, India.
| | | | | | | | | |
Collapse
|
12
|
Espiñeira M, Atanassova M, Vieites JM, Santaclara FJ. Validation of a method for the detection of five species, serogroups, biotypes and virulence factors of Vibrio by multiplex PCR in fish and seafood. Food Microbiol 2010; 27:122-31. [DOI: 10.1016/j.fm.2009.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 09/08/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
|
13
|
Tamrakar AK, Jain M, Goel AK, Kamboj DV, Singh L. Characterization of Vibrio cholerae from deep ground water in a cholera endemic area in Central India. Indian J Microbiol 2009; 49:271-5. [PMID: 23100781 DOI: 10.1007/s12088-009-0043-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 09/09/2008] [Indexed: 11/30/2022] Open
Abstract
A total of 8 out of 11 deep ground water samples collected from different villages in Central India were found contaminated with Vibrio cholerae non O1, non O139. In a multiplex PCR, isolates were found positive for ompW gene but negative for ctxAB and rfbO1 genes. However, isolates from two places were positive for tcp and zot genes, indicating their intestinal colonization and toxigenic potential. Antibiotic susceptibility studies revealed that all isolates were multidrug resistant. Although, none of the isolates was found PCR positive for the mobile genetic elements, class 1 integrons and SXT constins. The results of this study corroborated that deep ground water can also be an important reservoir of V. cholerae in plane endemic areas, suggesting a continuous monitoring of water samples for timely prevention of the disease.
Collapse
Affiliation(s)
- Akhilesh K Tamrakar
- Division of Biochemistry, Central Drug Research Institute, Lucknow, 226 001 India
| | | | | | | | | |
Collapse
|
14
|
Goel AK, Bhadauria S, Kumar P, Kamboj DV, Singh L. Semi-nested polymerase chain reaction for detection of toxigenic Vibrio cholerae from environmental water samples. Indian J Microbiol 2007; 47:207-11. [PMID: 23100668 DOI: 10.1007/s12088-007-0041-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 06/11/2007] [Accepted: 07/05/2007] [Indexed: 01/17/2023] Open
Abstract
A rapid and sensitive direct cell semi-nested PCR assay was developed for the detection of viable toxigenic V. cholerae in environmental water samples. The semi-nested PCR assay amplified cholera toxin (ctxA2B) gene present in the toxigenic V. cholerae. The detection sensitivity of direct cell semi-nested PCR was 2 × 10(3) CFU of V. cholerae whereas direct cell single-step PCR could detect 2 × 10(4) CFU of V. cholerae. The performance of the assay was evaluated using environmental water samples after spiking with known number of Vibrio cholerae O1. The spiked water samples were filtered through a 0.22 micrometer membrane and the bacteria retained on filters were enriched in alkaline peptone water and then used directly in the PCR assay. The semi-nested PCR procedure coupled with enrichment could detect less than 1 CFU/ml in ground water and sea water whereas 2 CFU/ml and 20 CFU/ml could be detected in pond water and tap water, respectively. The proposed method is simple, faster than the conventional detection assays and can be used for screening of drinking water or environmental water samples for the presence of toxigenic V. cholerae.
Collapse
Affiliation(s)
- Ajay Kumar Goel
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474 002 (M.P.) India
| | | | | | | | | |
Collapse
|
15
|
Goel AK, Ponmariappan S, Kamboj DV, Singh L. Single multiplex polymerase chain reaction for environmental surveillance of toxigenic-pathogenic O1 and non-O1 Vibrio cholerae. Folia Microbiol (Praha) 2007; 52:81-5. [PMID: 17571801 DOI: 10.1007/bf02932143] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A multiplex PCR assay was developed for the detection of toxigenic and pathogenic V. cholerae from direct water sources using specific primers targeting diverse genes, viz. outer membrane protein (ompW), cholera toxin (ctxB), ORF specific for O1 (rfbG), zonula occludens (zot) and toxin co-regulated pilus (tcpB); among these genes, ompW acts as internal control for V. cholerae, the ctx gene as a marker for toxigenicity and tcp for pathogenicity. The sensitivity of multiplex PCR was 5 x 10(4) V. cholerae cells per reaction. The procedure was simplified as direct bacterial cells were used as template and there was no need for DNA extraction. The assay was specific as no amplification occurred with the other bacteria used. Toxigenic V. cholerae were artificially spiked in different water samples, filtered through a 0.45 microm membrane, and the filters containing bacteria were enriched in APW for 6 h. PCR following filtration and enrichment could detect as little as 8 V. cholerae cells per mL in different spiked water samples. Various environmental potable water samples were screened for the presence of V. cholerae using this assay procedure. The proposed method is rapid, sensitive and specific for environmental surveillance for the presence of toxigenic-pathogenic and nonpathogenic V. cholerae.
Collapse
Affiliation(s)
- A K Goel
- Biotechnology Division, Defence Research & Development Establishment, Gwalior 474 002, India.
| | | | | | | |
Collapse
|
16
|
Rao VK, Sharma MK, Goel AK, Singh L, Sekhar K. Amperometric immunosensor for the detection of Vibrio cholerae O1 using disposable screen-printed electrodes. ANAL SCI 2007; 22:1207-11. [PMID: 16966811 DOI: 10.2116/analsci.22.1207] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A disposable amperometric immunosensor was studied for the rapid detection of Vibrio cholerae (V. cholerae), the causative agent of cholera, employing an indirect sandwich enzyme linked immunosorbent assay (ELISA) principle. Screen-printed electrodes (SPEs) were fabricated (by using commercial and homemade carbon inks), electrochemically characterized and the assay conditions were optimized for capturing antibodies and antigen. Whole cell lysate (WCL) of V. cholerae was used to raise antibodies in rabbits and mice. The antibodies raised against WCL of V. cholerae were found to be specific, and no cross reactivity was observed with other enteric bacteria. 1-Naphthyl phosphate was used as a substrate with the amperometric detection of its enzymatic hydrolysis product 1-naphthol at a potential of +400 mV vs. Ag/AgCl reference electrode. A comparison between the amperometric detection technique and the standard ELISA was made in terms of the total assay time, the amount of biological materials used and the sensitivity of detection. The minimum detection limit of the amperometric immunosensor for V. cholerae was found to be 10(5) cells/ml in 55 min, while ELISA detected 10(6) cells/ml in 4 h.
Collapse
Affiliation(s)
- Vepa K Rao
- Defence Research & Development Establishment, Jhansi Road, Gwalior, India.
| | | | | | | | | |
Collapse
|
17
|
Tamrakar AK, Goel AK, Kamboj DV, Singh L. Surveillance methodology for Vibrio cholerae in environmental samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2006; 16:305-12. [PMID: 16854675 DOI: 10.1080/09603120600734303] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The purpose of this study was to examine the prevalence of Vibrio cholerae in environmental water samples by using a series of biochemical tests. A total of 223 V. cholerae-like bacteria were isolated from TCBS agar after spreading the alkaline peptone water enriched sewer (n = 21) and water (n = 16) samples. All oxidase positive isolates were subjected to confirmation for V. cholerae by seven other biochemical tests and polymerase chain reaction. Only 74.2% isolates were found to be V. cholerae by PCR using primers against an outer membrane protein (ompW) gene, out of which only 2 isolates were positive for cholera toxin (ctxAB) gene. Among the various biochemical tests studied, arginine hydrolysis, arabinose fermentation and string test showed 92 - 100% sensitivity and 42 - 67% specificity. Eight isolates including the toxigenic ones, showed agglutination with V. cholerae O1 antiserum. The present study showed that no biochemical test is 100% specific for V. cholerae. However, a few tests, if performed in a sequence after growing the alkaline peptone water enriched samples onto TCBS media can be used for screening of V. cholerae from the environmental samples. This study also showed that most of the environmental isolates are non-O1/non-O139 and the chances of presence of toxigenic V. cholerae are very rare in the environment.
Collapse
Affiliation(s)
- Akhilesh K Tamrakar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, India
| | | | | | | |
Collapse
|
18
|
Immunological Biosensor for Detection of Vibrio cholerae O1in Environmental Water Samples. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9156-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|