1
|
Paula VB, Dias LG, Estevinho LM. Microbiological and Physicochemical Evaluation of Hydroxypropyl Methylcellulose (HPMC) and Propolis Film Coatings for Cheese Preservation. Molecules 2024; 29:1941. [PMID: 38731432 PMCID: PMC11085808 DOI: 10.3390/molecules29091941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Dairy products are highly susceptible to contamination from microorganisms. This study aimed to evaluate the efficacy of hydroxypropyl methylcellulose (HPMC) and propolis film as protective coatings for cheese. For this, microbiological analyses were carried out over the cheese' ripening period, focusing on total mesophilic bacteria, yeasts and moulds, lactic acid bacteria, total coliforms, Escherichia coli, and Enterobacteriaceae. Physicochemical parameters (pH, water activity, colour, phenolic compounds content) were also evaluated. The statistical analysis (conducted using ANOVA and PERMANOVA) showed a significant interaction term between the HPMC film and propolis (factor 1) and storage days (factor 2) with regard to the dependent variables: microbiological and physicochemical parameters. A high level of microbial contamination was identified at the baseline. However, the propolis films were able to reduce the microbial count. Physicochemical parameters also varied with storage time, with no significant differences found for propolis-containing films. Overall, the addition of propolis to the film influenced the cheeses' colour and the quantification of phenolic compounds. Regarding phenolic compounds, their loss was verified during storage, and was more pronounced in films with a higher percentage of propolis. The study also showed that, of the three groups of phenolic compounds (hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids), hydroxycinnamic acids showed the most significant losses. Overall, this study reveals the potential of using HPMC/propolis films as a coating for cheese in terms of microbiological control and the preservation of physicochemical properties.
Collapse
Affiliation(s)
- Vanessa B. Paula
- Doctoral School, University of León (ULE), Campus de Vegazana, 24007 León, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (L.G.D.); (L.M.E.)
| | - Luís G. Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (L.G.D.); (L.M.E.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Letícia M. Estevinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (L.G.D.); (L.M.E.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
2
|
Biological Activity and Chemical Composition of Propolis from Various Regions of Poland. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010141. [PMID: 36615334 PMCID: PMC9822435 DOI: 10.3390/molecules28010141] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Propolis is one of the bee products, with multiple biological properties used in numerous applications. The research objective was to determine the chemical composition and biological properties (antibacterial, antifungal, antiviral, antioxidant, and cytoprotective activity) of propolis extracts collected from various regions of Poland. The results indicated that the total content of phenols (116.16-219.41 mg GAE/g EEP) and flavonoids (29.63-106.07 mg QE/g EEP) in propolis extracts depended on their geographic origin. The high content of epicatechin, catechin, pinobanksin, myricetin, and acids: vanillic and syringic in propolis samples was confirmed by chromatographic analysis. Moreover, the presence of caffeic acid phenethyl ester was confirmed in all samples. The origin of propolis also influenced the biological properties of its extracts. The propolis extracts were characterized by moderate DPPH free radical scavenging activity (29.22-35.14%), and relatively low ferrous iron chelating activity (9.33-32.32%). The results indicated also that the propolis extracts showed high activity in the protection of human red blood cells against free radicals generated from 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). The extracts exhibited diversified activity against the tested pathogenic bacteria and limited activity against fungal strains. The research of selected propolis extracts showed that only 2 of 5 examined samples showed moderate activity against HPV (human papillomaviruses) and the activity depended on its geographical distribution.
Collapse
|
3
|
Computational Study of Asian Propolis Compounds as Potential Anti-Type 2 Diabetes Mellitus Agents by Using Inverse Virtual Screening with the DIA-DB Web Server, Tanimoto Similarity Analysis, and Molecular Dynamic Simulation. Molecules 2022; 27:molecules27133972. [PMID: 35807241 PMCID: PMC9268573 DOI: 10.3390/molecules27133972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2R)-7,4′-dihydroxy-5-methoxy-8-methylflavone; (RR)-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3-O-butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1.
Collapse
|
4
|
Cerqueira P, Cunha A, Almeida-Aguiar C. Potential of propolis antifungal activity for clinical applications. J Appl Microbiol 2022; 133:1207-1228. [PMID: 35592938 DOI: 10.1111/jam.15628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
The high incidence of skin diseases of microbial origin along with the widespread increase of microbial resistance demand for therapeutic alternatives. Research on natural compounds has been opening new perspectives for the development of new therapies with health positive impacts. Propolis, a resinous mixture produced by honeybees from plant exudates, is widely used as a natural medicine since ancient times, mainly due to its antimicrobial properties. More recently, antioxidant, anti-tumor, anti-inflammatory, hepatoprotective and immunomodulatory activities were also reported for this natural product, highlighting its high potential pharmacological interest. In the present work, an extensive review of the main fungi causing skin diseases as well as the effects of natural compounds, particularly propolis, against such disease-causing microorganisms was organized and compiled in concise handy tables. This information allows to conclude that propolis is a highly effective antimicrobial agent suggesting that it could be used as an alternative skin treatment against pathogenic microorganisms and also as a cosmeceutic component or as a source of bioactive ingredients.
Collapse
Affiliation(s)
- Patrícia Cerqueira
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Ana Cunha
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, Braga, Portugal.,CBMA - Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal.,CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Minho, Braga, Portugal
| | - Cristina Almeida-Aguiar
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, Braga, Portugal.,CBMA - Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal.,CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Minho, Braga, Portugal
| |
Collapse
|
5
|
Influence of Propolis Extract (Caffeic Acid Phenethyl Ester) Addition on the Candida albicans Adhesion and Surface Properties of Autopolymerized Acrylic Resin. Int J Dent 2022; 2022:6118660. [PMID: 35572357 PMCID: PMC9095368 DOI: 10.1155/2022/6118660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Denture stomatitis has been linked to the adhesion and proliferation of Candida albicans (C. albicans) on denture bases, which is a common and recurrent problem in denture wearers. The current study aimed to evaluate the effect of incorporating caffeic acid phenethyl ester (CAPE) into autopolymerized polymethyl methacrylate (PMMA) acrylic resin on C. albicans adhesion, surface roughness, and hardness as well as the correlation between tested properties. Methods. Autopolymerized acrylic resin discs (N = 100, 50/C. albicans adhesion; 50/C. albicans surface roughness and hardness test) were fabricated in dimensions 15 × 2.5 mm, samples were categorized into 5 groups (n = 10) based on CAPE concentrations; unmodified (control), 2.5, 5, 10 and 15% wt of acrylic powder. Specimens were stored in distilled water for 48 h at 37°C. C. albicans adhesion was evaluated via direct culture method. Profilometer and Vickers hardness tester were used for surface roughness and hardness measurement. Post hoc Tukey’s HSD with ANOVA test was performed to compare the difference of means amongst groups.
values were statistically significant at ≤0.05. Results. The addition of 2.5% of CAPE to PMMA has significantly reduced C. albicans counts in comparison to higher CAPE concentrations (
). As for surface roughness, it was noticed that it increased with increased CAPE concentrations (
). While surface hardness decreased as CAPE concentrations increased (
). All tested properties showed a significant difference amongst groups for C. albicans colony count and surface parameters. Conclusion. The addition of 2.5% of CAPE to PMMA acrylic resin significantly decreased C. albicans count compared to higher CAPE concentrations. CAPE can be used as an adjunct in the prevention of DS by incorporating in the PMMA acrylic resin.
Collapse
|
6
|
Kurek-Górecka A, Keskin Ş, Bobis O, Felitti R, Górecki M, Otręba M, Stojko J, Olczyk P, Kolayli S, Rzepecka-Stojko A. Comparison of the Antioxidant Activity of Propolis Samples from Different Geographical Regions. PLANTS (BASEL, SWITZERLAND) 2022; 11:1203. [PMID: 35567206 PMCID: PMC9104821 DOI: 10.3390/plants11091203] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Propolis composition depends on several factors. The classification of propolis is based on its geographical location, color and agricultural characteristics. It is also classified according to the flora where the bees collect the resins, which represent the raw material for propolis production. Propolis possesses high antioxidant activity determined by its phenolic compounds. Due to diverse composition and possible impact on human health, eight samples of propolis were evaluated for their phenolic composition and antioxidant activity. Samples of Polish, Romanian, Turkish and Uruguayan origin propolis were used for phenolic spectrum determination using high performance liquid chromatography and photodiode array detection and in vitro DPPH and ABTS methods were used to determine the antioxidant activity of the extracts. PCA and HCA models were applied to evaluate the correlation between isolated polyphenols and antioxidant activity. The results confirmed variability in propolis composition depending on the geographical region of collection and the plant sources, and correlation between chemical composition and antioxidant activity. Results of PCA and HCA analyses confirm that Polish propolis is similar to that from different provinces of Romania, while Turkish and Uruguay are completely different. Polish and Romanian propolis belong to the poplar type. The assessed phenolic compounds of propolis samples used in the study are responsible for its antioxidant effect. The observed antioxidant activity of the analyzed samples may suggest directing subsequent research on prophylactic and therapeutic properties concerning cardiovascular, metabolic, neurodegenerative, and cancerous diseases, which are worth continuing.
Collapse
Affiliation(s)
- Anna Kurek-Górecka
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, St Kasztanowa 3, 41-200 Sosnowiec, Poland;
| | - Şaban Keskin
- Vocational School of Health Services, Bilecik Seyh Edebali University, 11106 Bilecik, Turkey;
| | - Otilia Bobis
- Life Science Institute, Apiculture and Sericulture Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Rafael Felitti
- Oral Rehabilitation and Prosthodontics, Private Practice, Felix Olmedo 3716, Montevideo 11700, Uruguay;
| | - Michał Górecki
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, St Jedności 8, 41-200 Sosnowiec, Poland; (M.G.); (M.O.); (A.R.-S.)
| | - Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, St Jedności 8, 41-200 Sosnowiec, Poland; (M.G.); (M.O.); (A.R.-S.)
| | - Jerzy Stojko
- Department of Toxycology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, St Ostrogórska 30, 41-200 Sosnowiec, Poland;
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, St Kasztanowa 3, 41-200 Sosnowiec, Poland;
| | - Sevgi Kolayli
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61100 Trabzon, Turkey;
| | - Anna Rzepecka-Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, St Jedności 8, 41-200 Sosnowiec, Poland; (M.G.); (M.O.); (A.R.-S.)
| |
Collapse
|
7
|
Stanicka K, Dobrucka R, Woźniak M, Sip A, Majka J, Kozak W, Ratajczak I. The Effect of Chitosan Type on Biological and Physicochemical Properties of Films with Propolis Extract. Polymers (Basel) 2021; 13:polym13223888. [PMID: 34833186 PMCID: PMC8625764 DOI: 10.3390/polym13223888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of the research was to determine the influence of chitosan type and propolis extract concentration on biological and physicochemical properties of chitosan-propolis films in terms of their applicability in food packaging. The films were prepared using three types of chitosan: from crab shells, medium and high molecular weight and propolis concentration in the range of 0.75-5.0%. The prepared polysaccharide films were tested for antimicrobial properties, oxygen transmission rate (OTR) and water vapor transmission rate (WVTR). Moreover, sorption tests and structural analysis were carried out. Microbiological tests indicated the best antimicrobial activity for the film consisting of high molecular weight chitosan and 5.0% propolis extract. Both the type of chitosan and propolis concentration affected transmission parameters-OTR and WVTR. The best barrier properties were recorded for the film composed of high molecular weight chitosan and 5.0% propolis extract. The results of sorption experiments showed a slight influence of chitosan type and a significant effect of propolis extract concentration on equilibrium moisture content of tested films. Moreover, propolis extract concentration affected monolayer water capacity (Mm) estimated using the Guggenheim, Anderson and de Boer (GAB) sorption model. The obtained results indicate that chitosan films with an addition of propolis extract are promising materials for food packaging applications, including food containing probiotic microorganisms.
Collapse
Affiliation(s)
- Karolina Stanicka
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland; (K.S.); (M.W.)
| | - Renata Dobrucka
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland; (R.D.); (W.K.)
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland; (K.S.); (M.W.)
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 48, 60627 Poznań, Poland;
| | - Jerzy Majka
- Department of Wood Science and Thermal Technics, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60627 Poznań, Poland;
| | - Wojciech Kozak
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland; (R.D.); (W.K.)
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland; (K.S.); (M.W.)
- Correspondence:
| |
Collapse
|
8
|
Laaroussi H, Ferreira-Santos P, Genisheva Z, Bakour M, Ousaaid D, Teixeira JA, Lyoussi B. Unraveling the chemical composition, antioxidant, α-amylase and α-glucosidase inhibition of Moroccan propolis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
The Inhibitory Concentration of Natural Food Preservatives May Be Biased by the Determination Methods. Foods 2021; 10:foods10051009. [PMID: 34066353 PMCID: PMC8148156 DOI: 10.3390/foods10051009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 11/25/2022] Open
Abstract
The demand for natural antimicrobials as food preservatives has increased due to the growing interest of the population for a healthy lifestyle. The application of screening methods to identify the antimicrobial activity of natural compounds is of great importance. The in vitro determination of antimicrobial activity requires determining their minimum inhibitory concentrations to assess microbial susceptibility. This study aimed to evaluate the minimum inhibitory concentrations of three natural antimicrobial compounds—chitosan, ethanolic propolis extract, and nisin—against 37 microorganisms (different pathogens and spoilage microorganisms) by the methods of agar dilution and drop diffusion on agar. Culture media at different pH values were used for both methods to simulate different food products. Most of the microorganisms were inhibited by chitosan (0.5% w/v) and propolis (10 mg/mL), and most of the Gram-positive bacteria by nisin (25 μg/mL). Different pH values and the in vitro method used influenced the inhibition of each compound. Generally, lower minimum inhibitory concentrations were observed at lower pH values and for the agar dilution method. Furthermore, some microorganisms inhibited by the compounds on the agar dilution method were not inhibited by the same compounds and at the same concentrations on the drop diffusion technique. This study reinforces the need for using defined standard methods for the in vitro determination of minimum inhibitory concentrations. Natural compounds with potential antimicrobial action are a bet on food preservation. The use of standard techniques such as those used for antimicrobials of clinical applications are crucial to compare results obtained in different studies and different matrices.
Collapse
|
10
|
Pavelková A, Haščík P, Capcarová M, Kalafová A, Hanusová E, Tkáčová J, Bobko M, Čuboň J, Čech M, Kačániová M. Meat performance of Japanese quails after the application of bee bread powder. POTRAVINARSTVO 2020. [DOI: 10.5219/1330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was the evaluation of meat performance of Japanese quails after the addition of bee bread powder into their diet. A total of 80 one day-old Japanese quails were randomly divided into 4 groups (n = 20): the control group (C) without additional supplementation, the experimental group E1 supplemented with 2 mg bee bread powder per 1 kg of feed mixture; the experimental group E2 supplemented with 4 mg bee bread powder per 1 kg of feed mixture and the experimental group E3 supplemented with 6 mg bee bread powder per 1 kg of feed mixture. The groups were kept under the same conditions and the quails were slaughtered at 56 days of age. Based on the results, we can conclude that the application of bee bread powder generally has not confirmed a positive effect on the meat performance of Japanese quails, regarding to the quantities of bee bread powder in the experimental groups.
Collapse
|
11
|
Avula B, Sagi S, Masoodi MH, Bae JY, Wali AF, Khan IA. Quantification and Characterization of Phenolic Compounds from Northern Indian Propolis Extracts and Dietary Supplements. J AOAC Int 2020; 103:1378-1393. [PMID: 33241387 DOI: 10.1093/jaoacint/qsaa032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/28/2020] [Accepted: 02/26/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Propolis is a resinous substance produced by bees. Propolis extracts have been used for anti-inflammatory and antimicrobial activities. The use of propolis dietary supplements has been increasing in the United States and the rest of the world. OBJECTIVE A simple, economic, and valid analytical method is needed for quality assessment of dietary supplements and extracts claiming to contain propolis. METHODS A ultra-high performance liquid chromatography (UHPLC) quadropole time-of-flight-MS method was used to characterize the chemical composition of northern Indian propolis. Fourteen major phenolic compounds were quantified using a UHPLC-DAD method. An HPTLC method was used to develop chemical fingerprinting profiles for propolis extracts and dietary supplements. The seven propolis extracts and 14 dietary supplements purchased in the U.S. were analyzed using the UHPLC-DAD-QToF method. RESULTS Fifty-seven compounds belonging to phenolic, coumarin, fatty acid, and terpene classes were identified in propolis extracts. Based on quantification results, the content of 14 phenolic compounds in propolis extracts varied from 19-32% in dietary supplements, a significant variation to the recommended daily intake (0.2-94 mg/day). CONCLUSIONS/HIGHLIGHTS The developed analytical methods can be used for quality assessment of propolis extracts and dietary supplements.
Collapse
Affiliation(s)
- Bharathi Avula
- The University of Mississippi, School of Pharmacy, National Center for Natural Products Research, University, Oxford, MS 38677, USA
| | - Satyanarayanaraju Sagi
- The University of Mississippi, School of Pharmacy, National Center for Natural Products Research, University, Oxford, MS 38677, USA
| | - Mubashir H Masoodi
- University of Kashmir, Faculty of Applied Sciences & Technology, Department of Pharmaceutical Sciences, Srinagar, 190006 J & K, India
| | - Ji-Yeong Bae
- The University of Mississippi, School of Pharmacy, National Center for Natural Products Research, University, Oxford, MS 38677, USA
| | - Adil F Wali
- University of Kashmir, Faculty of Applied Sciences & Technology, Department of Pharmaceutical Sciences, Srinagar, 190006 J & K, India
| | - Ikhlas A Khan
- The University of Mississippi, School of Pharmacy, National Center for Natural Products Research, University, Oxford, MS 38677, USA.,The University of Mississippi, Department of BioMolecular Sciences, School of Pharmacy, Division of Pharmacognosy, University, Oxford, MS 38677, USA
| |
Collapse
|
12
|
Gajek G, Marciniak B, Lewkowski J, Kontek R. Antagonistic Effects of CAPE (a Component of Propolis) on the Cytotoxicity and Genotoxicity of Irinotecan and SN38 in Human Gastrointestinal Cancer Cells In Vitro. Molecules 2020; 25:molecules25030658. [PMID: 32033066 PMCID: PMC7038052 DOI: 10.3390/molecules25030658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/20/2022] Open
Abstract
The incidence of gastrointestinal cancers is increasing every year. Irinotecan (CPT-11), a drug used in the treatment of colorectal cancer and gastric cancer, is metabolized by carboxylesterases to an active metabolite, SN-38, which is more cytotoxic. CAPE (caffeic acid phenethyl ester) is an active component of propolis, which has a high antibacterial, antiviral, and antineoplastic potential. This study analyses the impact of CAPE on the cytotoxic (MTT assay), genotoxic (comet assay) and proapoptotic (caspase-3/7 activity) potential of irinotecan and its metabolite SN-38 in cultures of gastrointestinal neoplastic cells (HCT116, HT29, AGS). Cytotoxicity and genotoxicity activities of these compounds were carried out in comparison with human peripheral blood lymphocytes (PBLs) in vitro. The antioxidant potential of CAPE was investigated in relation H2O2-induced oxidative stress in the both neoplastic cells and PBLs. CAPE expressed cytotoxic, genotoxic, and pro-apoptotic activity against AGS, HCT116, and HT29 tumor cells. CAPE, in the presence of different concentrations of irinotecan or SN38, decreased the cytotoxicity, genotoxicity, and pro-apoptotic activity in these cell lines, but it has no such action on normal human peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Gabriela Gajek
- Laboratory of Cytogenetics, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
- Correspondence: ; Tel.: +48-42-635-44-26
| | - Beata Marciniak
- Laboratory of Cytogenetics, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| | - Jarosław Lewkowski
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St., 91-403 Lodz, Poland;
| | - Renata Kontek
- Laboratory of Cytogenetics, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| |
Collapse
|
13
|
El‐Guendouz S, Lyoussi B, Miguel MG. Insight on Propolis from Mediterranean Countries: Chemical Composition, Biological Activities and Application Fields. Chem Biodivers 2019; 16:e1900094. [DOI: 10.1002/cbdv.201900094] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Soukaina El‐Guendouz
- Laboratory of Physiology-Pharmacology-Environmental HealthFaculty of Sciences Dhar El MehrazUniversity Sidi Mohamed Ben Abdallah Fez, BP 1796 Atlas 30000 Morocco
- Department of Chemistry and PharmacyFaculty of Science and TechnologyMeditBioUniversity of Algarve Campus de Gambelas, MeditBio Faro 8005-139 Portugal
| | - Badiaa Lyoussi
- Laboratory of Physiology-Pharmacology-Environmental HealthFaculty of Sciences Dhar El MehrazUniversity Sidi Mohamed Ben Abdallah Fez, BP 1796 Atlas 30000 Morocco
| | - Maria G. Miguel
- Department of Chemistry and PharmacyFaculty of Science and TechnologyMeditBioUniversity of Algarve Campus de Gambelas, MeditBio Faro 8005-139 Portugal
| |
Collapse
|
14
|
Gomes J, Barbosa J, Teixeira P. Natural Antimicrobial Agents as an Alternative to Chemical Antimicrobials in the Safety and Preservation of Food Products. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2212796812666180511115037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Microbiological quality of food is of utmost importance in the food industry, so the use of food additives is essential to reduce microbial loads, which may result in food spoilage and poisoning.Objective:This study aimed to test the antimicrobial activity of three natural compounds – chitosan, ethanolic extract of propolis, and nisin – against 15 Gram-positive bacteria, 15 Gram-negative bacteria and two fungi and, also, to compare it with the antimicrobial activity of the chemical compound sodium nitrite, alone and in combination with sodium chloride.Methods:Antimicrobial activity was tested at different pH values and temperatures of incubation to simulate the presence of the pathogens in different food products and different storage conditions, as well as to determine their influence on the inhibition of microorganisms.Results:Most of the Gram-positive bacteria were inhibited at 25 µg/mL of nisin. Concentrations of 10 mg/mL of ethanolic extract of propolis inhibited fungi, most of the Gram-positive and some Gramnegative bacteria, and with concentrations of 0.65% (w/v) of chitosan, it was possible to inhibit most of the tested microorganisms. All the natural compounds tested had greater inhibitory effect against the various microorganisms compared with sodium nitrite alone and in combination with sodium chloride, in the different conditions of pH and temperature.Conclusion:This suggests that natural compounds could be good candidates for use as an alternative to chemical antimicrobials in food safety and preservation.
Collapse
Affiliation(s)
- Joana Gomes
- Universidade Catolica Portuguesa, Escola Superior de Biotecnologia, CBQF – Centro de Biotecnologia e Quimica Fina, Porto, Portugal
| | - Joana Barbosa
- Universidade Catolica Portuguesa, Escola Superior de Biotecnologia, CBQF – Centro de Biotecnologia e Quimica Fina, Porto, Portugal
| | - Paula Teixeira
- Universidade Catolica Portuguesa, Escola Superior de Biotecnologia, CBQF – Centro de Biotecnologia e Quimica Fina, Porto, Portugal
| |
Collapse
|
15
|
Vengoji R, Macha MA, Batra SK, Shonka NA. Natural products: a hope for glioblastoma patients. Oncotarget 2018; 9:22194-22219. [PMID: 29774132 PMCID: PMC5955138 DOI: 10.18632/oncotarget.25175] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive malignant tumors with an overall dismal survival averaging one year despite multimodality therapeutic interventions including surgery, radiotherapy and concomitant and adjuvant chemotherapy. Few drugs are FDA approved for GBM, and the addition of temozolomide (TMZ) to standard therapy increases the median survival by only 2.5 months. Targeted therapy appeared promising in in vitro monolayer cultures, but disappointed in preclinical and clinical trials, partly due to the poor penetration of drugs through the blood brain barrier (BBB). Cancer stem cells (CSCs) have intrinsic resistance to initial chemoradiation therapy (CRT) and acquire further resistance via deregulation of many signaling pathways. Due to the failure of classical chemotherapies and targeted drugs, research efforts focusing on the use of less toxic agents have increased. Interestingly, multiple natural compounds have shown antitumor and apoptotic effects in TMZ resistant and p53 mutant GBM cell lines and also displayed synergistic effects with TMZ. In this review, we have summarized the current literature on natural products or product analogs used to modulate the BBB permeability, induce cell death, eradicate CSCs and sensitize GBM to CRT.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muzafar A. Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nicole A. Shonka
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
16
|
Jurica K, Gobin I, Kremer D, Čepo DV, Grubešić RJ, Karačonji IB, Kosalec I. Arbutin and its metabolite hydroquinone as the main factors in the antimicrobial effect of strawberry tree ( Arbutus unedo L.) leaves. J Herb Med 2017. [DOI: 10.1016/j.hermed.2017.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Zabaiou N, Fouache A, Trousson A, Baron S, Zellagui A, Lahouel M, Lobaccaro JMA. Biological properties of propolis extracts: Something new from an ancient product. Chem Phys Lipids 2017; 207:214-222. [PMID: 28411017 DOI: 10.1016/j.chemphyslip.2017.04.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022]
Abstract
Natural products are an interesting source of new therapeutics, especially for cancer therapy as 70% of them have botany origin. Propolis, a resinous mixture that honey bees collect and transform from tree buds, sap flows, or other botanical sources, has been used by ethnobotany and traditional practitioners as early in Egypt as 3000 BCE. Enriched in flavonoids, phenol acids and terpene derivatives, propolis has been widely used for its antibacterial, antifungal and anti-inflammatory properties. Even though it is a challenge to standardize propolis composition, chemical analyses have pointed out interesting molecules that also present anti-oxidant and anti-proliferative properties that are of interest in the field of anti-cancer therapy. This review describes the various geographical origins and compositions of propolis, and analyzes how the main compounds of propolis could modulate cell signaling. A focus is made on the putative use of propolis in prostate cancer.
Collapse
Affiliation(s)
- Nada Zabaiou
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne,58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France; Laboratory of Molecular Toxicology, Department of Molecular and Cellular Biology, Faculty of Science, Université Mohamed Seddik Ben Yahia, 18000 Jijel, Algeria
| | - Allan Fouache
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne,58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne,58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne,58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Amar Zellagui
- Laboratory of Biomolecules and Plant Breeding, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria
| | - Mesbah Lahouel
- Laboratory of Molecular Toxicology, Department of Molecular and Cellular Biology, Faculty of Science, Université Mohamed Seddik Ben Yahia, 18000 Jijel, Algeria.
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne,58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| |
Collapse
|
18
|
Borawska MH, Naliwajko SK, Moskwa J, Markiewicz-Żukowska R, Puścion-Jakubik A, Soroczyńska J. Anti-proliferative and anti-migration effects of Polish propolis combined with Hypericum perforatum L. on glioblastoma multiforme cell line U87MG. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:367. [PMID: 27647142 PMCID: PMC5029078 DOI: 10.1186/s12906-016-1351-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/14/2016] [Indexed: 02/01/2023]
Abstract
Background Propolis and Hypericum perforatum L. are natural products which contain many active compounds and have numerous beneficial effects, including an antitumor effect. Gliobmastoma multiforme (GBM) is a common primary brain tumor with poor prognosis and limited treatment options. In this study, the effect of propolis (EEP) combined with H. perforatum L. (HPE) on glioblastoma cell line U87MG was investigated for the first time. Methods Anti-proliferative activity of EEP, HPE and their combination (EEP + HPE) was determined by a cytotoxicity test, DNA binding by [3H]-thymidine incorporation and cell migration assay. Anti-metastatic properties in U87MG treated with EEP, HPE and EEP + HPE were estimated on cells migration test (scratch assay) and metalloproteinases (MMP2 and MMP9) secretion (gelatin zymography). Results Combination of HPE and EEP extracts was found to have a time- and dose-dependent inhibitory effect on the viability of U87MG cells. This effect was significantly higher (p < 0.05) when compared to these two extracts applied separately, which was confirmed by the significant reduction of DNA synthesis and significantly higher mitochondrial membrane permeabilization. A significant decreasing in migration cells and in pro-MMP9 and pro-MMP2 secretion in U87MG cells were demonstrated after exposure to combination of EEP (30 μg/ml) with HPE (6.25 μg/ml). Conclusions In this study, the combination of ethanolic extract from propolis and ethanolic extract of fresh-cut H. perforatum L. was proved the ability to reduce invasiveness of glioma cells through the inhibition of MMP2 and MMP9 secretion and suppression of cell migration. It has a more potent anti-proliferative effect on U87MG glioma cell line compared to using propolis and H. perforatum L. separately. Further studies are required to verify whether the examined extracts can activate apoptotic pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1351-2) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Genovese S, Taddeo VA, Fiorito S, Epifano F. Quantification of 4′-geranyloxyferulic acid (GOFA) in honey samples of different origin by validated RP-HPLC-UV method. J Pharm Biomed Anal 2016; 117:577-80. [DOI: 10.1016/j.jpba.2015.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 01/05/2023]
|
20
|
Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:206439. [PMID: 26106433 PMCID: PMC4461776 DOI: 10.1155/2015/206439] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 01/13/2023]
Abstract
The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Several in vitro and in vivo studies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins.
Collapse
|
21
|
Huang S, Zhang CP, Wang K, Li GQ, Hu FL. Recent advances in the chemical composition of propolis. Molecules 2014; 19:19610-32. [PMID: 25432012 PMCID: PMC6271758 DOI: 10.3390/molecules191219610] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 12/02/2022] Open
Abstract
Propolis is a honeybee product with broad clinical applications. Current literature describes that propolis is collected from plant resins. From a systematic database search, 241 compounds were identified in propolis for the first time between 2000 and 2012; and they belong to such diverse chemical classes as flavonoids, phenylpropanoids, terpenenes, stilbenes, lignans, coumarins, and their prenylated derivatives, showing a pattern consistent with around 300 previously reported compounds. The chemical characteristics of propolis are linked to the diversity of geographical location, plant sources and bee species.
Collapse
Affiliation(s)
- Shuai Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Cui-Ping Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Kai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - George Q Li
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). Fitoterapia 2014; 95:247-57. [PMID: 24704551 DOI: 10.1016/j.fitote.2014.03.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 11/23/2022]
Abstract
Propolis of Australian stingless bees (Tetragonula carbonaria, Meliponini) originating from Corymbia torelliana (Myrtaceae) fruit resins was tested for its antimicrobial activities as well as its flavonoid contents. This study aimed at the isolation, structural elucidation and antibacterial testing of flavanones of C. torelliana fruit resins that are incorporated into stingless bee propolis. Flavanones of this study were elucidated by spectroscopic and spectrometric methods including UV, 1D and 2D NMR, EI-MS, ESI-MS and HR-MS. The results indicated known C-methylated flavanones namely, 1 (2S)-cryptostrobin, its regioisomer 2 (2S)- stroboponin, 3 (2S)- cryptostrobin 7-methyl ether, and 6 (2S)- desmethoxymatteucinol, and known flavanones 4 (2S)- pinostrobin and 5 (2S)- pinocembrin as markers for C. torelliana fruit resins and one propolis type. Ethanolic preparations of propolis were shown to be active against Staphylococcus aureus (ATCC 25923) and to a lesser extent against Pseudomonas aeruginosa (ATCC 27853). C. torelliana flavanones inhibited the growth of S. aureus therefore contributing to the antibacterial effects observed for Australian stingless bee propolis extracts.
Collapse
|
23
|
Torlak E, Sert D. Antibacterial effectiveness of chitosan–propolis coated polypropylene films against foodborne pathogens. Int J Biol Macromol 2013; 60:52-5. [DOI: 10.1016/j.ijbiomac.2013.05.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/22/2013] [Accepted: 05/16/2013] [Indexed: 11/29/2022]
|
24
|
A Proposal for Physicochemical Standards and Antioxidant Activity of Portuguese Propolis. J AM OIL CHEM SOC 2013. [DOI: 10.1007/s11746-013-2324-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Doğanyiğit Z, Küp FÖ, Silici S, Deniz K, Yakan B, Atayoglu T. Protective effects of propolis on female rats' histopathological, biochemical and genotoxic changes during LPS induced endotoxemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:632-639. [PMID: 23453303 DOI: 10.1016/j.phymed.2013.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/10/2012] [Accepted: 01/26/2013] [Indexed: 06/01/2023]
Abstract
In recent years, propolis has been the object of extensive research for its antibacterial, antioxidant, anti-inflammatory, and antitumoral activities. This study aims to determine the hepatoprotective efficiency of propolis on experimental endotoxemia in rats. In the current study, fifty adult Sprague Dawley rats (weighing 200-300 g) were randomly divided into five groups of ten rats each. Normal saline solution was administered to the rats in the control group, while in the second group LPS (30 mg/kg), in the third group propolis (250 mg/kg), in the fourth group first propolis and then LPS (30 mg/kg), and in the fifth group, first LPS (30 mg/kg) and then propolis were given. Six hours after the application, biochemical (MDA levels) and histopathological changes as well as global DNA methylation analysis in the liver tissue samples were determined, while in the blood tissue samples Genomic Template Stability (GTS, %) was evaluated using RAPD-PCR profiles. The results demonstrated that the administration of propolis could have a protective effect against changes of both genomic stability values and methylation profiles, and it minimized the increase in MDA and tissue damage caused by LPS. In conclusion, the application of propolis prior to LPS-induced endotoxemia has shown to reduce hepatic damage.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Erciyes University, Medical Faculty, Department of Histology and Embryology, Kayseri, Turkey
| | | | | | | | | | | |
Collapse
|
26
|
Markiewicz-Żukowska R, Borawska MH, Fiedorowicz A, Naliwajko SK, Sawicka D, Car H. Propolis changes the anticancer activity of temozolomide in U87MG human glioblastoma cell line. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:50. [PMID: 23445763 PMCID: PMC3598711 DOI: 10.1186/1472-6882-13-50] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 02/25/2013] [Indexed: 01/16/2023]
Abstract
BACKGROUND Propolis is a honey bee product which contains many active compounds, such as CAPE or chrysin, and has many beneficial activities. Recently, its anti-tumor properties have been discussed. We have tested whether the ethanolic extract of propolis (EEP) interferes with temozolomide (TMZ) to inhibit U87MG cell line growth. METHODS The U87MG glioblastoma cell line was exposed to TMZ (10-100 μM), EEP (10-100 μg/ml) or a mixture of TMZ and EEP during 24, 48 or 72 hours. The cell division was examined by the H3-thymidine incorporation, while the western blot method was used for detection of p65 subunit of NF-κB and ELISA test to measure the concentration of its p50 subunit in the nucleus. RESULTS We have found that both, TMZ and EEP administrated alone, had a dose- and time-dependent inhibitory effect on the U87MG cell line growth, which was manifested by gradual reduction of cell viability and alterations in proliferation rate. The anti-tumor effect of TMZ (20 μM) was enhanced by EEP, which was especially well observed after a short time of exposition, where simultaneous usage of TMZ and EEP resulted in a higher degree of growth inhibition than each biological factor used separately. In addition, cells treated with TMZ presented no changes in NF-κB activity in prolonged time of treatment and EEP only slightly reduced the nuclear translocation of this transcription factor. In turn, the combined incubation with TMZ and EEP led to an approximately double reduction of NF-κB nuclear localization. CONCLUSIONS We conclude that EEP presents cytotoxic properties and may cooperate with TMZ synergistically enhancing its growth inhibiting activity against glioblastoma U87MG cell line. This phenomenon may be at least partially mediated by a reduced activity of NF-κB.
Collapse
|
27
|
Abstract
PURPOSE The aim of the present study was to examine the effect of freeze dried ethanolic extract of propolis (EEP), chrysin and caffeic acid phenethyl ester (CAPE) dependently on their concentrations on the viability and morphology of human astroglia cells line (SVGp12). MATERIAL AND METHODS Using gas chromatography - mass spectroscopy (GC-MS) we have established the composition of lyophilisate of EEP collected in Podlasie region (Poland). After 24 h, 48 h and 72 h of exposition to EEP or its ingredients we evaluated the survivability of human astroglia cells (SVGp12) using MTT test. Morphological analysis of human astroglia cells was defined by transmission electron microscope. RESULTS About 70 ingredients of EEP were evaluated by GC-MS. We obtained the strong decline of viability of astroglia cells SVGp12 approximately to 16% after EEP; 33% after chrysin and 25% after CAPE application. Condensed form of mitochondria observed in transmission electron microscope may indicate activation of intrinsic pathway of apoptosis induced by EEP, chrysin and CAPE in SVGp12 cell line. CONCLUSION This study showed that EEP, chrysin and CAPE reduced viability of human astroglia cells probably due to apoptosis process.
Collapse
|
28
|
Zhang HJ, Zhu DD, Li ZL, Sun J, Zhu HL. Synthesis, molecular modeling and biological evaluation of β-ketoacyl-acyl carrier protein synthase III (FabH) as novel antibacterial agents. Bioorg Med Chem 2011; 19:4513-9. [DOI: 10.1016/j.bmc.2011.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/05/2011] [Accepted: 06/08/2011] [Indexed: 11/29/2022]
|
29
|
Abstract
The aim of our study was to evaluate the effect of propolis on mortality of fish eggs due to mycosis, to study its efficacy on the fish growth rate and to analyze the histochemical and ultrastructural characteristics of muscle fibres. We evaluated the muscular development of fish in two different experimental conditions: traditional feeding and feeding with addition of propolis (groups A and B, respectively). The study was carried out on two species of teleosts bred in Italy, Oncorhynchus mykiss (rainbow trout) and Salmo trutta (brown trout). The use of propolis reduced mortality of fish eggs. The muscles were stained for myosin ATPase and succinic dehydrogenase to evaluate fibre type. The area, maximum and minimum diameter for each fibre type in relation to the body length were measured. The animals fed propolis showed a more rapid muscular growth compared to control fed the standard diet. Fibres were larger in the Salmo trutta than in the Oncorhynchus mykiss in both groups. In fish of A group, myotomal muscle, the presence of giant fibres and index of environmental stress was noticed. This type of study is valuable in order to extend the use of propolis as an antifungal agent and a natural product that can improve fish farming.
Collapse
|
30
|
Koç AN, Silici S, Kasap F, Hörmet-Oz HT, Mavus-Buldu H, Ercal BD. Antifungal activity of the honeybee products against Candida spp. and Trichosporon spp. J Med Food 2010; 14:128-34. [PMID: 21128826 DOI: 10.1089/jmf.2009.0296] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Honeybee products (honey, royal jelly, pollen, and propolis) were evaluated for their ability to inhibit the growth of 40 yeast strains of Candida albicans, Candida glabrata, Candida krusei, and Trichosporon spp. The broth microdilution method was used to assess the antifungal activity of honeybee products against yeasts. Fluconazole was selected as the antifungal control agent. Using the broth microdilution method, minimal inhibitory concentration ranges with regard to all isolates were 5-80% (vol/vol), 0.06-1 μg/mL, 0.002-0.25 μg/mL, 0.006-0.1 μg/mL, and 0.02-96 μg/mL for honey, royal jelly, pollen, propolis, and fluconazole, respectively. The antifungal activities of each product decreased in the following order: propolis >pollen > royal jelly > > honey. This study demonstrated that honeybee products, particularly propolis and pollen, can help to control some fluconazole-resistant fungal strains.
Collapse
Affiliation(s)
- Ayşe Nedret Koç
- Department of Microbiology, Medical Faculty, Safiye Cikrikcioglu Vocational College, Erciyes University, Kayseri, Turkey
| | | | | | | | | | | |
Collapse
|
31
|
Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 2010; 62:1-20. [PMID: 20043255 DOI: 10.1080/01635580903191585] [Citation(s) in RCA: 503] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural phenolic compounds play an important role in cancer prevention and treatment. Phenolic compounds from medicinal herbs and dietary plants include phenolic acids, flavonoids, tannins, stilbenes, curcuminoids, coumarins, lignans, quinones, and others. Various bioactivities of phenolic compounds are responsible for their chemopreventive properties (e.g., antioxidant, anticarcinogenic, or antimutagenic and anti-inflammatory effects) and also contribute to their inducing apoptosis by arresting cell cycle, regulating carcinogen metabolism and ontogenesis expression, inhibiting DNA binding and cell adhesion, migration, proliferation or differentiation, and blocking signaling pathways. This review covers the most recent literature to summarize structural categories and molecular anticancer mechanisms of phenolic compounds from medicinal herbs and dietary plants.
Collapse
Affiliation(s)
- Wu-Yang Huang
- School of Biological Sciences, the University of Hong Kong, Hong Kong, PR China.
| | | | | |
Collapse
|
32
|
Kalogeropoulos N, Konteles SJ, Troullidou E, Mourtzinos I, Karathanos VT. Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chem 2009. [DOI: 10.1016/j.foodchem.2009.02.060] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|