1
|
Hu S, Xu C, Xie Y, Ma L, Niu Q, Han G, Huang J. Metagenomic insights into the diversity of 2,4-dichlorophenol degraders and the cooperation patterns in a bacterial consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168723. [PMID: 38008322 DOI: 10.1016/j.scitotenv.2023.168723] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
2,4-Dichlorophenol, which is largely employed in herbicides and industrial production, is frequently detected in ecosystems and poses risks to human health and environmental safety. Microbial communities are thought to perform better than individual strains in the complete degradation of organic contaminants. However, the synergistic degradation mechanisms of the microbial consortia involved in 2,4-dichlorophenol degradation are still not widely understood. In this study, a bacterial consortium named DCP-2 that is capable of degrading 2,4-dichlorophenol was obtained. Metagenomic analysis, cultivation-dependent functional verification, and co-occurrence network analysis were combined to reveal the primary 2,4-dichlorophenol degraders and the cooperation patterns in the consortium DCP-2. Metagenomic analysis showed that Pseudomonas, Achromobacter, and Pigmentiphaga were the primary degraders for the complete degradation of 2,4-dichlorophenol. Thirty-nine phylogenetically diverse bacterial genera, such as Brucella, Acinetobacter, Aeromonas, Allochromatium and Bosea, were identified as keystone taxa for 2,4-dichlorophenol degradation by keystone taxa analysis of the co-occurrence networks. In addition, a stable synthetic consortium of isolates from DCP-2 was constructed, consisting of Pseudomonas sp. DD-13 and Brucella sp. FZ-1; this synthetic consortium showed superior degradation capability for 2,4-dichlorophenol in both mineral salt medium and wastewater compared with monoculture. The findings provide valuable insights into the practical bioremediation of 2,4-dichlorophenol-contaminated sites.
Collapse
Affiliation(s)
- Shunli Hu
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Chuangchuang Xu
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Yanghe Xie
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Lu Ma
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Qingfeng Niu
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Guomin Han
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China.
| | - Junwei Huang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China.
| |
Collapse
|
2
|
Actinobacteria isolated from wastewater treatment plants located in the east-north of Algeria able to degrade pesticides. World J Microbiol Biotechnol 2022; 38:105. [PMID: 35501608 DOI: 10.1007/s11274-022-03282-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
The pollution of water resources by pesticides poses serious problems for public health and the environment. In this study, Actinobacteria strains were isolated from three wastewater treatment plants (WWTPs) and were screened for their ability to degrade 17 pesticide compounds. Preliminary screening of 13 of the isolates of Actinobacteria allowed the selection of 12 strains with potential for the degradation of nine different pesticides as sole carbon source, including aliette, for which there are no previous reports of biodegradation. Evaluation of the bacterial growth and degradation kinetics of the pesticides 2,4-dichlorophenol (2,4-DCP) and thiamethoxam (tiam) by selected Actinobacteria strains was performed in liquid media. Strains Streptomyces sp. ML and Streptomyces sp. OV were able to degrade 45% of 2,4-DCP (50 mg/l) as the sole carbon source in 30 days and 84% of thiamethoxam (35 mg/l) in the presence of 10 mM of glucose in 18 days. The biodegradation of thiamethoxam by Actinobacteria strains was reported for the first time in this study. These strains are promising for use in bioremediation of ecosystems polluted by this type of pesticides.
Collapse
|
3
|
4-chlorophenol removal by air lift packed bed bioreactor and its modeling by kinetics and numerical model (artificial neural network). Sci Rep 2021; 11:670. [PMID: 33436785 PMCID: PMC7804011 DOI: 10.1038/s41598-020-79968-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
4-chlorophenol (4-CP) is a hazardous contaminant that is hardly removed by some technologies. This study investigated the biodegradation, and physical 4-CP removal by a mixed microbial consortium in the Airlift packed bed bioreactor (ALPBB) and modeling by an artificial neural network (ANN) for first the time. The removal efficiency of ALPBB was investigated at 4-CP(1-1000 mg/L) and hydraulic retention time (HRT)(6-96 hr) by HPLC. The results showed that removal efficiency decreased from 85 at 1 to 0.03% at 1000 mg/L, with increasing 4-CP concentration and HRT decreasing. BOD5/COD increased with increasing exposure time and concentration decreasing, from 0.05 at 1000 to 0.96 at 1 mg/L. With time increasing, the correlation between COD and 4-CP removal increased (R2 = 0.5, HRT = 96 h). There was a positive correlation between the removal of 4-CP and SCOD by curve fitting was R2 = 0.93 and 0.96, respectively. Moreover, the kinetics of 4-CP removal follows the first-order and pseudo-first-order equation at 1 mg/L and other concentrations, respectively. 4-CP removal modeling has shown that the 2:3:1 and 2:4:1 were the best structures (MSE: physical = 0.126 and biological = 0.9)(R2allphysical = 0.999 and R2testphysical = 0.999) and (R2allbiological = 0.71, and R2testbiological = 0.997) for 4-CP removal. Also, the output obtained by the ANN prediction of 4-CP was correlated to the actual data (R2physical = 0.9997 and R2biological = 0.59). Based on the results, ALPBB with up-flow submerged aeration is a suitable option for the lower concentration of 4-CP, but it had less efficiency at high concentrations. So, physical removal of 4-CP was predominant in biological treatment. Therefore, the modification of this reactor for 4-CP removal is suggested at high concentrations.
Collapse
|
4
|
Chris Felshia S, AshwinKarthick N, Thilagam R, Gnanamani A. Elucidation of 2, 4-Dichlorophenol degradation by Bacillus licheniformis strain SL10. ENVIRONMENTAL TECHNOLOGY 2020; 41:366-377. [PMID: 30010506 DOI: 10.1080/09593330.2018.1498923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is a priority pollutant according to US Environmental Protection Agency. Its use in various chemical industries and its presence in the effluent necessitate effective removal studies. The present study focuses on degradation of 2,4-DCP by phenol adapted bacteria Bacillus licheniformis strain SL10 (MTCC 25059) at a relatively faster rate. The organism exhibited tolerance to 150 ppm of 2,4-DCP and showed a linear relationship between the growth and substrate concentration (µmax 0.022/h) and the inhibitory concentration was 55.74 mg/L. The degradation efficiency of the organism was 74% under optimum conditions but increased to 97% when the growth medium containing nil sodium chloride. The degradation of 2,4-DCP was effected by the action of extracellular cocktail enzyme containing Catechol 2, 3 dioxygenase (C23DO), phenol hydroxylase and Catechol, 1,2 dioxygenase (C12DO). In vitro enzymatic degradation studies exhibit 98% degradation of 50 ppm of 2,4-DCP within 2 h. Analyses of degradation products infer that the chosen organism followed a meta-cleavage pathway while degrading 2,4-DCP. In conclusion, the bacteria Bacillus licheniformis strain SL10 finds potential application in the remediation of 2,4-DCP.
Collapse
Affiliation(s)
| | | | - R Thilagam
- CSIR-Central Leather Research Institute, Chennai, India
| | - A Gnanamani
- CSIR-Central Leather Research Institute, Chennai, India
| |
Collapse
|
5
|
Cho SY, Kwean OS, Yang JW, Cho W, Kwak S, Park S, Lim Y, Kim HS. Identification of the upstream 4-chlorophenol biodegradation pathway using a recombinant monooxygenase from Arthrobacter chlorophenolicus A6. BIORESOURCE TECHNOLOGY 2017; 245:1800-1807. [PMID: 28522197 DOI: 10.1016/j.biortech.2017.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 05/06/2023]
Abstract
This study aimed to clarify the initial 4-chlorophenol (4-CP) biodegradation pathway promoted by a two-component flavin-diffusible monooxygenase (TC-FDM) consisting of CphC-I and CphB contained in Arthrobacter chlorophenolicus A6 and the decomposition function of CphC-I. The TC-FDM genes were cloned from A. chlorophenolicus A6, and the corresponding enzymes were overexpressed. Since CphB was expressed in an insoluble form, Fre, a flavin reductase obtained from Escherichia coli, was used. These enzymes were purified using Ni2+-NTA resin. It was confirmed that TC-FDM catalyzes the oxidation of 4-CP and the sequential conversion of 4-CP to benzoquinone (BQN)→hydroquinone (HQN)→HQL. This indicated that CphC-I exhibits substrate specificity for 4-CP, BQN, and HQN. The activity of CphC-I for 4-CP was 63.22U/mg-protein, and the Michaelis-Menten kinetic parameters were vmax=0.21mM/min, KM=0.19mM, and kcat/KM=0.04mM-1min-1. These results would be useful for the development of a novel biochemical treatment technology for 4-CP and phenolic hydrocarbons.
Collapse
Affiliation(s)
- Su Yeon Cho
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Oh Sung Kwean
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jun Won Yang
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Wooyoun Cho
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seonyeong Kwak
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sungyoon Park
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yejee Lim
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han S Kim
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Patel BP, Kumar A. Biodegradation of 4-chlorophenol in an airlift inner loop bioreactor with mixed consortium: effect of HRT, loading rate and biogenic substrate. 3 Biotech 2016; 6:117. [PMID: 28330191 PMCID: PMC4909021 DOI: 10.1007/s13205-016-0435-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/25/2016] [Indexed: 11/29/2022] Open
Abstract
In the present work, removal of 4-chlorophenol (4-CP) by the mixed microbial consortium was evaluated in an airlift inner loop bioreactor. During the study, the effect of various reactor parameters such as hydraulic retention time (HRT), biogenetic substrate concentration, loading rate, and initial substrate concentration on the removal efficiency of 4-CP was investigated. Bioreactor showed a maximum removal rate of 16.59 mg/L/h at the optimum conditions of 24 h HRT, 400 mg/L initial 4-CP, and 0.2 g/L peptone. The optimum HRT found was 24 h after that the washout occured, and the degradation efficiency almost dropped to 50 % at 18 h HRT. Effect of peptone showed that lower concentration of peptone improves 4-CP removal efficiency of the bioreactor. Also, the mixed consortium had utilized 4-CP as a carbon source, as evidenced by the increasing biomass concentration with 4-CP at constant peptone concentration. The presence of 5-chloro 2-hydroxymuconic semialdehyde in the reactor infers that the mixed consortium has followed the meta-cleavage pathway for 4-CP degradation.
Collapse
Affiliation(s)
- Bhishma P. Patel
- Environmental Pollution Abatement Lab, Chemical Engineering Department, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Arvind Kumar
- Environmental Pollution Abatement Lab, Chemical Engineering Department, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
7
|
Patel BP, Kumar A. Multi-substrate biodegradation of chlorophenols by defined microbial consortium. 3 Biotech 2016; 6:191. [PMID: 28330263 PMCID: PMC5010539 DOI: 10.1007/s13205-016-0511-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/28/2016] [Indexed: 11/28/2022] Open
Abstract
In the present study, a defined mixed microbial consortium was investigated for their ability to utilize three different monochlorophenols (MCPs) and 2,4-DCP individually and in the mixture. None of the individual strains were able to utilize 3-CP and 4-CP, but when they were mixed to form defined consortium, they have shown great potential and degradation of high concentration of 3-CP and 4-CP. Spectrophotometric analysis of metabolites during MCPs degradation establishes the presence of 2-chloromaleylacetate. Multi-substrate degradation study of 2,4-DCP in the presence of three MCPs showed the great prospect of microbial consortium for in situ bioremediation. During multi-substrate degradation, the biodegradation rate (mg L-1 day-1) was observed in the order of 2,4-DCP > 2CP > 3CP > 4CP. Biodegradation kinetic of three MCPs using Andrew's model showed maximum removal rate (R m) of 2.78, 0.91, 1.82 mg L-1 h-1 for 2-CP, 3-CP and 4-CP, respectively.
Collapse
Affiliation(s)
- Bhishma P. Patel
- Value Addition, Research and Development Department, National Innovation Foundation-India, Satellite Complex, Jodhpur Tekra, Ahmedabad, 380015 Gujarat India
| | - Arvind Kumar
- Environmental Pollution Abatement Lab, Chemical Engineering Department, National Institute of Technology, Rourkela, 769008 Odisha India
| |
Collapse
|
8
|
|
9
|
Liang J, Peng X, Yin D, Li B, Wang D, Lin Y. Screening of a microbial consortium for highly simultaneous degradation of lignocellulose and chlorophenols. BIORESOURCE TECHNOLOGY 2015; 190:381-387. [PMID: 25974352 DOI: 10.1016/j.biortech.2015.04.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
In this work, spent mushroom substrates were utilized for screening a microbial consortium with highly simultaneous degradation of lignocellulose and chlorophenols. The desired microbial consortium OEM1 was gained through successive cultivation for about 50 generations and its stability of composition was verified by denaturing gradient gel electrophoresis (DGGE) during screening process. It could degrade lignocellulose and chlorophenols at around 50% and 100%, respectively, within 7days. The diversity analysis and the growth characteristics of OEM1 during degradation process were investigated by PCR-DGGE combined with clone and sequence. The results indicated that OEM1 consisted of 31 strains. Proteobacteria and Bacteroidetes were the predominant bacterial groups. The dynamic change of OEM1 illustrated that consortium community structure was effected by pH and substrate alteration and tended to be stable after 6days' cultivation. Furthermore, bacteria (11 strains) and actinomycetes (2 strains) were obtained based on plate isolation and identified via 16S rDNA sequence.
Collapse
Affiliation(s)
- Jiajin Liang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xiang Peng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Dexing Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Beiyin Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Dehan Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yunqin Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
10
|
El-Sayed WS, Ibrahim MK, Ouf SA. Molecular characterization of the alpha subunit of multicomponent phenol hydroxylase from 4-chlorophenol-degrading Pseudomonas sp. strain PT3. J Microbiol 2014; 52:13-9. [DOI: 10.1007/s12275-014-3250-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 11/30/2022]
|
11
|
Tomei MC, Annesini MC, Daugulis AJ. 2,4-Dichlorophenol removal in a solid–liquid two phase partitioning bioreactor (TPPB): kinetics of absorption, desorption and biodegradation. N Biotechnol 2012; 30:44-50. [DOI: 10.1016/j.nbt.2012.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/29/2022]
|
12
|
Sharma S, Mukhopadhyay M, Murthy Z. Rate parameter estimation for 4-chlorophenol degradation by UV and organic oxidants. J IND ENG CHEM 2012. [DOI: 10.1016/j.jiec.2011.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Chan H. Biodegradation of petroleum oil achieved by bacteria and nematodes in contaminated water. Sep Purif Technol 2011. [DOI: 10.1016/j.seppur.2011.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Olaniran AO, Igbinosa EO. Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. CHEMOSPHERE 2011; 83:1297-306. [PMID: 21531434 DOI: 10.1016/j.chemosphere.2011.04.009] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 05/24/2023]
Abstract
Chlorophenols are chlorinated aromatic compound structures and are commonly found in pesticide preparations as well as industrial wastes. They are recalcitrant to biodegradation and consequently persistent in the environment. A variety of chlorophenols derivatives compounds are highly toxic, mutagenic and carcinogenic for living organisms. Biological transformation by microorganisms is one of the key remediation options that can be exploited to solve environmental pollution problems caused by these notorious compounds. The key enzymes in the microbial degradation of chlorophenols are the oxygenases and dioxygenases. These enzymes can be engineered for enhanced degradation of highly chlorinated aromatic compounds through directed evolution methods. This review underscores the mechanisms of chlorophenols biodegradation with the view to understanding how bioremediation processes can be optimized for cleaning up chloroaromatic contaminated environments.
Collapse
Affiliation(s)
- Ademola O Olaniran
- Discipline of Microbiology, School of Biochemistry, Genetics and Microbiology, Faculty of Science and Agriculture, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa.
| | | |
Collapse
|
15
|
Characterization of 2T engine oil degrading indigenous bacteria, isolated from high altitude (Mussoorie), India. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0316-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Biodegradation of diesel oil and production of fatty acid esters by a newly isolated Pseudomonas citronellolis KHA. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9863-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|