1
|
Traxler L, Krause K, Kothe E. Basidiomycetes to the rescue: Mycoremediation of metal-organics co-contaminated soils. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:83-113. [PMID: 39389709 DOI: 10.1016/bs.aambs.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The increasing need for metals leads to contaminated post-mining landscapes. At the same time, the contamination with organic, recalcitrant contamination increases. This poses a problem of reuse of large areas, often co-contaminated with both, metals, and organic pollutants. For the remediation of areas contaminated with multiple contaminants and combining many stress factors, technical solutions including groundwater treatment, where necessary, have been devised. However, this is applied to highly contaminated, small sites. The reuse of larger, co-contaminated landscapes remains a major challenge. Mycoremediation with fungi offers a good option for such areas. Fungi cope particularly well with heterogeneous conditions due to their adaptability and their large hyphal network. This chapter summarizes the advantages of basidiomycetes with a focus on wood rot fungi in terms of their ability to tolerate metals, radionuclides, and organic contaminants such as polycyclic aromatic hydrocarbons. It also shows how these fungi can reduce toxicity of contaminants to other organisms including plants to allow for restored land-use. The processes based on diverse molecular mechanisms are introduced and their use for mycoremediation is discussed.
Collapse
Affiliation(s)
- Lea Traxler
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Katrin Krause
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Erika Kothe
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany.
| |
Collapse
|
2
|
Agrawal N, Kumar V, Shahi SK. Biodegradation and detoxification of phenanthrene in in vitro and in vivo conditions by a newly isolated ligninolytic fungus Coriolopsis byrsina strain APC5 and characterization of their metabolites for environmental safety. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61767-61782. [PMID: 34231140 DOI: 10.1007/s11356-021-15271-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant organic pollutants generated from agricultural, industrial, and municipal sources, and their strong carcinogenic and teratogenic properties pose a harmful threat to human beings. The present study deals with the bioremediation of phenanthrene by a ligninolytic fungus, Coriolopsis byrsina (Mont.) Ryvarden strain APC5 (GenBank; KY418163.1), isolated from the fruiting body of decayed wood surface. During the experiment, Coriolopsis byrsina strain APC5 was found as a promising organism for the degradation and detoxification of phenanthrene (PHE) in in vitro and in vivo conditions. Further, HPLC analysis showed that the C. byrsina strain degraded 99.90% of 20 mg/L PHE in in vitro condition, whereas 77.48% degradation of 50 mg/L PHE was reported in in vivo condition. The maximum degradation of PHE was noted 25 °C temperature under shaking flask conditions at pH 6.0. Further, GC-MS analysis of fungal treated samples showed detection of 9,10-Dihydroxy phenanthrene, 2,2-Diphenic acid, phthalic acid, 4-heptyloxy phenol, benzene octyl, and acetic acid anhydride as the metabolic products of degraded PHE. Furthermore, the phytotoxicity evaluation of degraded PHE was observed through the seed germination method using Vigna radiata and Cicer arietinum seeds. The phytotoxicity results showed that the seed germination index and vegetative growth parameters of tested plants were increased in the degraded PHE soil. As results, C. byrsina strain APC5 was found to be a potential and promising organism to degrade and detoxify PHE without showing any adverse effect of their metabolites.
Collapse
Affiliation(s)
- Nikki Agrawal
- Bio-Resource Tech Laboratory, Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Vineet Kumar
- Bio-Resource Tech Laboratory, Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Sushil Kumar Shahi
- Bio-Resource Tech Laboratory, Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
3
|
Widespread Ability of Ligninolytic Fungi to Degrade Hazardous Organic Pollutants as the Basis for the Self-Purification Ability of Natural Ecosystems and for Mycoremediation Technologies. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability of sixteen wood- and soil-inhabiting basidiomycete strains and four ascomycete strains to degrade the most hazardous, widespread, and persistent pollutants (polycyclic aromatic hydrocarbons, oxyethylated nonylphenol, alkylphenol, anthraquinone-type synthetic dyes, and oil) was found. The disappearance of the pollutants, their main metabolites, and some adaptive properties (activities of ligninolytic enzymes, the production of emulsifying compounds and exopolysaccharides) were evaluated. The toxicity of polycyclic aromatic hydrocarbons decreased during degradation. New data were obtained regarding (1) the dependence of the completeness of polycyclic aromatic hydrocarbon degradation on the composition of the ligninolytic enzyme complex; (2) the degradation of neonol AF9-12 by higher fungi (different accessibilities of the oxyethyl chain and the aromatic ring of the molecules to different fungal genera); and (3) the production of an emulsifying agent in response to the presence in the cultivation medium of hydrophobic pollutants as the common property of wood- and soil-inhabiting basidiomycetes and ascomycetes. Promise for use in mycoremediation was shown in the wood-inhabiting basidiomycetes Pleurotus ostreatus f. Florida, Schizophyllum commune, Trametes versicolor MUT 3403, and Trametes versicolor DSM11372; the litter-decomposing basidiomycete Stropharia rugosoannulata; and the ascomycete Cladosporium herbarum. These fungi degrade a wide range of pollutants without accumulation of toxic metabolites and produce ligninolytic enzymes and emulsifying compounds.
Collapse
|
4
|
Elyamine AM, Kan J, Meng S, Tao P, Wang H, Hu Z. Aerobic and Anaerobic Bacterial and Fungal Degradation of Pyrene: Mechanism Pathway Including Biochemical Reaction and Catabolic Genes. Int J Mol Sci 2021; 22:8202. [PMID: 34360967 PMCID: PMC8347714 DOI: 10.3390/ijms22158202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Microbial biodegradation is one of the acceptable technologies to remediate and control the pollution by polycyclic aromatic hydrocarbon (PAH). Several bacteria, fungi, and cyanobacteria strains have been isolated and used for bioremediation purpose. This review paper is intended to provide key information on the various steps and actors involved in the bacterial and fungal aerobic and anaerobic degradation of pyrene, a high molecular weight PAH, including catabolic genes and enzymes, in order to expand our understanding on pyrene degradation. The aerobic degradation pathway by Mycobacterium vanbaalenii PRY-1 and Mycobactetrium sp. KMS and the anaerobic one, by the facultative bacteria anaerobe Pseudomonas sp. JP1 and Klebsiella sp. LZ6 are reviewed and presented, to describe the complete and integrated degradation mechanism pathway of pyrene. The different microbial strains with the ability to degrade pyrene are listed, and the degradation of pyrene by consortium is also discussed. The future studies on the anaerobic degradation of pyrene would be a great initiative to understand and address the degradation mechanism pathway, since, although some strains are identified to degrade pyrene in reduced or total absence of oxygen, the degradation pathway of more than 90% remains unclear and incomplete. Additionally, the present review recommends the use of the combination of various strains of anaerobic fungi and a fungi consortium and anaerobic bacteria to achieve maximum efficiency of the pyrene biodegradation mechanism.
Collapse
Affiliation(s)
- Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
- Department of Life Science, Faculty of Science and Technology, University of Comoros, Moroni 269, Comoros
| | - Jie Kan
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Shanshan Meng
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Peng Tao
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Hui Wang
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Zhong Hu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| |
Collapse
|
5
|
Zhuo R, Fan F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146132. [PMID: 33714829 DOI: 10.1016/j.scitotenv.2021.146132] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 05/14/2023]
Abstract
Environmental problems resultant from organic pollutants are a major current challenge for modern societies. White rot fungi (WRF) are well known for their extensive organic compound degradation abilities. The unique oxidative and extracellular ligninolytic systems of WRF that exhibit low substrate specificity, enable them to display a considerable ability to transform or degrade different environmental contaminants. In recent decades, WRF and their ligninolytic enzymes have been widely applied in the removal of polycyclic aromatic hydrocarbons (PAHs), pharmaceutically active compounds (PhACs), endocrine disruptor compounds (EDCs), pesticides, synthetic dyes, and other environmental pollutants, wherein promising results have been achieved. This review focuses on advances in WRF-based bioremediation of organic pollutants over the last 10 years. We comprehensively document the application of WRF and their lignocellulolytic enzymes for removing organic pollutants. Moreover, potential problems and intriguing observations that are worthy of additional research attention are highlighted. Lastly, we discuss trends in WRF-remediation system development and avenues that should be considered to advance research in the field.
Collapse
Affiliation(s)
- Rui Zhuo
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - Fangfang Fan
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Agrawal N, Verma P, Shahi SK. Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0197-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
Pozdnyakova N, Dubrovskaya E, Chernyshova M, Makarov O, Golubev S, Balandina S, Turkovskaya O. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus. Fungal Biol 2018; 122:363-372. [PMID: 29665962 DOI: 10.1016/j.funbio.2018.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/17/2017] [Accepted: 02/26/2018] [Indexed: 11/26/2022]
Abstract
The degradation of two isomeric three-ringed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus D1 and the litter-decomposing fungus Agaricus bisporus F-8 was studied. Despite some differences, the degradation of phenanthrene and anthracene followed the same scheme, forming quinone metabolites at the first stage. The further fate of these metabolites was determined by the composition of the ligninolytic enzyme complexes of the fungi. The quinone metabolites of phenanthrene and anthracene produced in the presence of only laccase were observed to accumulate, whereas those formed in presence of laccase and versatile peroxidase were metabolized further to form products that were further included in basal metabolism (e.g. phthalic acid). Laccase can catalyze the initial attack on the PAH molecule, which leads to the formation of quinones, and that peroxidase ensures their further oxidation, which eventually leads to PAH mineralization. A. bisporus, which produced only laccase, metabolized phenanthrene and anthracene to give the corresponding quinones as the dominant metabolites. No products of further utilization of these compounds were detected. Thus, the fungi's affiliation with different ecophysiological groups and their cultivation conditions affect the composition and dynamics of production of the ligninolytic enzyme complex and the completeness of PAH utilization.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| | - Ekaterina Dubrovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| | - Marina Chernyshova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| | - Oleg Makarov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| | - Sergey Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| | - Svetlana Balandina
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| | - Olga Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov 13, 410049, Saratov, Russia.
| |
Collapse
|
8
|
Pozdnyakova NN, Balandina SA, Dubrovskaya EV, Golubev CN, Turkovskaya OV. Ligninolytic basidiomycetes as promising organisms for the mycoremediation of PAH-contaminated Environments. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1755-1315/107/1/012071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Aydin S, Karaçay HA, Shahi A, Gökçe S, Ince B, Ince O. Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2016.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Teerapatsakul C, Pothiratana C, Chitradon L, Thachepan S. Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametes polyzona RYNF13. J GEN APPL MICROBIOL 2016; 62:303-312. [PMID: 27885193 DOI: 10.2323/jgam.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The biodegradation of three polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, and pyrene, by a newly isolated thermotolerant white rot fungal strain RYNF13 from Thailand, was investigated. The strain RYNF13 was identified as Trametes polyzona, based on an analysis of its internal transcribed spacer sequence. The strain RYNF13 was superior to most white rot fungi. The fungus showed excellent removal of PAHs at a high concentration of 100 mg·L-1. Complete degradation of phenanthrene in a mineral salt glucose medium culture was observed within 18 days of incubation at 30°C, whereas 90% of fluorene and 52% of pyrene were degraded under the same conditions. At a high temperature of 42°C, the strain RYNF13 was still able to grow, and degraded approximately 68% of phenanthrene, whereas 48% of fluorene and 30% of pyrene were degraded within 32 days. Thus, the strain RYNF13 is a potential fungus for PAH bioremediation, especially in a tropical environment where the temperature can be higher than 40°C. The strain RYNF13 secreted three different ligninolytic enzymes, manganese peroxidase, laccase, and lignin peroxidase, during PAH biodegradation at 30°C. When the incubation temperature was increased from 30°C to 37°C and 42°C, only two ligninolytic enzymes, manganese peroxidase and laccase, were detectable during the biodegradation. Manganese peroxidase was the major enzyme produced by the fungus. In the culture containing phenanthrene, manganese peroxidase showed the highest enzymatic activity at 179 U·mL-1. T. polyzona RYNF13 was determined as a potential thermotolerant white rot fungus, and suitable for application in the treatment of PAH-containing contaminants.
Collapse
|
11
|
Pozdnyakova NN, Chernyshova MP, Grinev VS, Landesman EO, Koroleva OV, Turkovskaya OV. Degradation of fluorene and fluoranthene by the basidiomycete Pleurotus ostreatus. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816060132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Pozdnyakova N, Makarov O, Chernyshova M, Turkovskaya O, Jarosz-Wilkolazka A. Versatile peroxidase of Bjerkandera fumosa: substrate and inhibitor specificity. Enzyme Microb Technol 2012. [PMID: 23199738 DOI: 10.1016/j.enzmictec.2012.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The inhibitor and substrate specificities of versatile peroxidase from Bjerkandera fumosa (VPBF) were studied. Two different effects were found: NaN(3), Tween-80, anthracene, and fluorene decreased the activity of VPBF, but p-aminobenzoic acid increased it. A mixed mechanism of effector influence on the activity of this enzyme was shown. The catalytic properties of VPBF in the oxidation of mono- and polycyclic aromatic compounds were studied also. 2,7-Diaminofluorene, ABTS, veratryl alcohol, and syringaldazine can be oxidized by VPBF in two ways: either directly by the enzyme or by diffusible chelated Mn(3+) as an oxidizing agent. During VPBF oxidation of 2,7-diaminofluorene, both with and without Mn(2+), biphasic kinetics with apparent saturation in both micromolar and millimolar ranges were obtained. In the case of ABTS, inhibition of VPBF activity by an excess of substrate was observed. Direct oxidation of p-aminobenzoic acid by versatile peroxidase was found for the first time. The oxidation of three- and four-ring PAHs by VPBF was investigated, and the oxidation of anthracene, phenanthrene, fluorene, pyrene, chrysene, and fluoranthene was shown. The products of PAH oxidation (9,10-anthraquinone, 9,10-phenanthrenequinone, and 9-fluorenone) catalyzed by VPBF were identified.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, Russia.
| | | | | | | | | |
Collapse
|
13
|
Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2012; 2012:243217. [PMID: 22830035 PMCID: PMC3398574 DOI: 10.1155/2012/243217] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/07/2012] [Accepted: 04/05/2012] [Indexed: 11/21/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are natural and anthropogenic aromatic hydrocarbons with two or more fused benzene rings. Because of their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, PAHs are a significant environmental concern. Ligninolytic fungi, such as Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus, have the capacity of PAH degradation. The enzymes involved in the degradation of PAHs are ligninolytic and include lignin peroxidase, versatile peroxidase, Mn-peroxidase, and laccase. This paper summarizes the data available on PAH degradation by fungi belonging to different ecophysiological groups (white-rot and litter-decomposing fungi) under submerged cultivation and during mycoremediation of PAH-contaminated soils. The role of the ligninolytic enzymes of these fungi in PAH degradation is discussed.
Collapse
|
14
|
Uhnáková B, Ludwig R, Pěknicová J, Homolka L, Lisá L, Šulc M, Petříčková A, Elzeinová F, Pelantová H, Monti D, Křen V, Haltrich D, Martínková L. Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products. BIORESOURCE TECHNOLOGY 2011; 102:9409-9415. [PMID: 21865031 DOI: 10.1016/j.biortech.2011.07.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 05/31/2023]
Abstract
Tetrabromobisphenol A (TBBPA) degradation was investigated using white rot fungi and their oxidative enzymes. Strains of the Trametes, Pleurotus, Bjerkandera and Dichomitus genera eliminated almost 1 mM TBBPA within 4 days. Laccase, whose role in TBBPA degradation was demonstrated in fungal cultures, was applied to TBBPA degradation alone and in combination with cellobiose dehydrogenase from Sclerotium rolfsii. Purified laccase from Trametes versicolor degraded approximately 2 mM TBBPA within 5 h, while the addition of cellobiose dehydrogenase increased the degradation rate to almost 2.5 mM within 3 h. Laccase was used to prepare TBBPA metabolites 2,6-dibromo-4-(2-hydroxypropane-2-yl) phenol (1), 2,6-dibromo-4-(2-methoxypropane-2-yl) phenol (2) and 1-(3,5-dibromo-4-hydroxyphen-1-yl)-2,2',6,6'-tetrabromo-4,4'-isopropylidene diphenol (3). As compounds 1 and 3 were identical to the TBBPA metabolites prepared by using rat and human liver fractions (Zalko et al., 2006), laccase can provide a simple means of preparing these metabolites for toxicity studies. Products 1 and 2 exhibited estrogenic effects, unlike TBBPA, but lower cell toxicity.
Collapse
Affiliation(s)
- Bronislava Uhnáková
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pozdnyakova NN, Nikiforova SV, Makarov OE, Turkovskaya OV. Effect of polycyclic aromatic hydrocarbons on laccase production by white rot fungus Pleurotus ostreatus D1. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811050103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|